Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 May 1;273(18):11032-7.
doi: 10.1074/jbc.273.18.11032.

The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network

Affiliations
Free article

The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network

L Veinger et al. J Biol Chem. .
Free article

Abstract

The role of small heat-shock proteins in Escherichia coli is still enigmatic. We show here that the small heat-shock protein IbpB is a molecular chaperone that assists the refolding of denatured proteins in the presence of other chaperones. IbpB oligomers bind and stabilize heat-denatured malate dehydrogenase (MDH) and urea-denatured lactate dehydrogenase and thus prevent the irreversible aggregation of these proteins during stress. While IbpB-stabilized proteins alone do not refold spontaneously, they are specifically delivered to the DnaK/DnaJ/GrpE (KJE) chaperone system where they refold in a strict ATPase-dependent manner. Although GroEL/GroES (LS) chaperonins do not interact directly with IbpB-released proteins, LS accelerate the rate of KJE-mediated refolding of IbpB-released MDH, and to a lesser extent lactate dehydrogenase, by rapidly processing KJE-released early intermediates. Kinetic and gel-filtration analysis showed that denatured MDH preferentially transfers from IbpB to KJE, then from KJE to LS, and then forms a active enzyme. IbpB thus stabilizes aggregation-prone folding intermediates during stress and, as an integral part of a cooperative multichaperone network, is involved in the active refolding of stress-denatured proteins.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources