Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin
- PMID: 9482790
- PMCID: PMC6792908
- DOI: 10.1523/JNEUROSCI.18-06-02028.1998
Distinct requirements for evoked and spontaneous release of neurotransmitter are revealed by mutations in the Drosophila gene neuronal-synaptobrevin
Abstract
Two modes of vesicular release of transmitter occur at a synapse: spontaneous release in the absence of a stimulus and evoked release that is triggered by Ca2+ influx. These modes often have been presumed to represent the same exocytotic apparatus functioning at different rates in different Ca2+ concentrations. To investigate the mechanism of transmitter release, we have examined the role of synaptobrevin/VAMP, a protein involved in vesicular docking and/or fusion. We generated a series of mutations, including null mutations, in neuronal-synaptobrevin (n-syb), the neuronally expressed synaptobrevin gene in Drosophila. Mutant embryos completely lacking n-syb form morphologically normal neuromuscular junctions. Electrophysiological recordings from the neuromuscular junction of these mutants reveal that the excitatory synaptic current evoked by stimulation of the motor neuron is abolished entirely. However, spontaneous release of quanta from these terminals persists, although its rate is reduced by 75%. Thus, at least a portion of the spontaneous "minis" that are seen at the synapse can be generated by a protein complex that is distinct from that required for an evoked synaptic response.
Figures
Similar articles
-
Ablation of All Synaptobrevin vSNAREs Blocks Evoked But Not Spontaneous Neurotransmitter Release at Neuromuscular Synapses.J Neurosci. 2019 Jul 31;39(31):6049-6066. doi: 10.1523/JNEUROSCI.0403-19.2019. Epub 2019 Jun 3. J Neurosci. 2019. PMID: 31160536 Free PMC article.
-
Roles of SNARE proteins and synaptotagmin I in synaptic transmission: studies at the Drosophila neuromuscular synapse.Neurosignals. 2003 Jan-Feb;12(1):13-30. doi: 10.1159/000068912. Neurosignals. 2003. PMID: 12624525 Review.
-
Two independent pathways mediated by cAMP and protein kinase A enhance spontaneous transmitter release at Drosophila neuromuscular junctions.J Neurosci. 2000 Nov 15;20(22):8315-22. doi: 10.1523/JNEUROSCI.20-22-08315.2000. J Neurosci. 2000. PMID: 11069938 Free PMC article.
-
Members of the synaptobrevin/vesicle-associated membrane protein (VAMP) family in Drosophila are functionally interchangeable in vivo for neurotransmitter release and cell viability.Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13867-72. doi: 10.1073/pnas.202335999. Epub 2002 Oct 3. Proc Natl Acad Sci U S A. 2002. PMID: 12364587 Free PMC article.
-
Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release.Ann N Y Acad Sci. 1999 Apr 30;868:144-59. doi: 10.1111/j.1749-6632.1999.tb11284.x. Ann N Y Acad Sci. 1999. PMID: 10414292 Review.
Cited by
-
Opposing functions of two sub-domains of the SNARE-complex in neurotransmission.EMBO J. 2010 Aug 4;29(15):2477-90. doi: 10.1038/emboj.2010.130. Epub 2010 Jun 18. EMBO J. 2010. PMID: 20562829 Free PMC article.
-
Analysis of Sec22p in endoplasmic reticulum/Golgi transport reveals cellular redundancy in SNARE protein function.Mol Biol Cell. 2002 Sep;13(9):3314-24. doi: 10.1091/mbc.e02-04-0204. Mol Biol Cell. 2002. PMID: 12221135 Free PMC article.
-
Neurobeachin is essential for neuromuscular synaptic transmission.J Neurosci. 2004 Apr 7;24(14):3627-36. doi: 10.1523/JNEUROSCI.4644-03.2004. J Neurosci. 2004. PMID: 15071111 Free PMC article.
-
Altered electrical properties in Drosophila neurons developing without synaptic transmission.J Neurosci. 2001 Mar 1;21(5):1523-31. doi: 10.1523/JNEUROSCI.21-05-01523.2001. J Neurosci. 2001. PMID: 11222642 Free PMC article.
-
Presynaptic calcium channel localization and calcium-dependent synaptic vesicle exocytosis regulated by the Fuseless protein.J Neurosci. 2008 Apr 2;28(14):3668-82. doi: 10.1523/JNEUROSCI.5553-07.2008. J Neurosci. 2008. PMID: 18385325 Free PMC article.
References
-
- Ashton AC, Li Y, Doussau F, Weller U, Dougan G, Poulain B, Dolly JO. Tetanus toxin inhibits neuroexocytosis even when its Zn2+-dependent protease activity is removed. J Biol Chem. 1995;270:31386–31390. - PubMed
-
- Banerjee A, Barry V, DasGupta B, Martin T. N-ethylmaleimide-sensitive factor acts at a prefusion ATP-dependent step in Ca2+-activated exocytosis. J Biol Chem. 1996;271:20223–20226. - PubMed
-
- Bier E, Vaessin H, Shepherd S, Lee K, McCall K, Barbel S, Ackerman L, Carretto R, Uemura T, Grell E, Jan LY, Jan YN. Searching for pattern and mutation in the Drosophila genome with a P-lacZ vector. Genes Dev. 1989;3:1273–1287. - PubMed
-
- Broadie K, Prokop A, Bellen H, O’Kane C, Schulze K, Sweeney S. Syntaxin and synaptobrevin function downstream of vesicle docking in Drosophila. Neuron. 1995;15:663–673. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Miscellaneous