Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1998 Jan 16;273(3):1677-83.
doi: 10.1074/jbc.273.3.1677.

Deoxyhypusine synthase activity is essential for cell viability in the yeast Saccharomyces cerevisiae

Affiliations
Free article

Deoxyhypusine synthase activity is essential for cell viability in the yeast Saccharomyces cerevisiae

M H Park et al. J Biol Chem. .
Free article

Abstract

Deoxyhypusine synthase catalyzes the first step in the posttranslational synthesis of an unusual amino acid, hypusine (N epsilon-(4-amino-2-hydroxybutyl)lysine), in the eukaryotic translation initiation factor 5A (eIF-5A) precursor protein. The null mutation in the single copy gene, yDHS, encoding deoxyhypusine synthase results in the loss of viability in the yeast Saccharomyces cerevisiae. Upon depletion of deoxyhypusine synthase, and consequently of eIF-5A, cessation of growth was accompanied by a marked enlargement of cells, suggesting a defect in cell cycle progression or in cell division. Two residues of the yeast enzyme, Lys308 and Lys350, corresponding to Lys287 and Lys329, respectively, known to be critical for the activity of the human enzyme, were targeted for site-directed mutagenesis. The chromosomal ydhs null mutation was complemented by the plasmid-borne yDHS wild-type gene, but not by mutated genes encoding inactive proteins, including that with Lys350-->Arg substitution or with substitutions at both Lys308 and Lys350. The mutated gene ydhs (K308R) encoding a protein with diminished activities (< 1% of wild type) could support growth but only to a very limited extent. These findings provide strong evidence that the hypusine modification is indeed essential for the survival of S. cerevisiae and imply a vital function for eIF-5A in all eukaryotes.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources