Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Oct 22;337(2-3):213-8.
doi: 10.1016/s0014-2999(97)01323-x.

Biphasic effect of hydrogen peroxide on field potentials in rat hippocampal slices

Affiliations

Biphasic effect of hydrogen peroxide on field potentials in rat hippocampal slices

H Katsuki et al. Eur J Pharmacol. .

Abstract

In the CA1 region of rat hippocampal slices, H2O2 (0.294-2.94 mM) caused initial augmentation, and subsequent long-lasting depression, of population spikes and excitatory postsynaptic potentials. The effect of H2O2 may not be mediated by its degradation product, hydroxyl radicals, because an iron chelator deferoxamine did not block the effect. A catalase inhibitor 3-amino-1,2,4-triazole only modestly attenuated the initial augmentation, suggesting that the effect of H2O2 is not attributable to catalase-dependent O2 generation, either. An N-methyl-D-aspartate receptor antagonist DL-2-amino-5-phosphonovaleric acid had no influence on the effect of H2O2, whereas a gamma-aminobutyric acid type A receptor channel blocker picrotoxin attenuated long-lasting depression, indicating that gamma-aminobutyric acid-mediated inhibition is altered during the depression phase. The initial augmentation but not subsequent depression was attenuated by a phospholipase A2/C inhibitor 4-bromophenacyl bromide, suggesting the involvement of lipid signaling molecule(s) in the enhancement of excitatory synaptic transmission. These results suggest that H2O2 regulates hippocampal synaptic transmission via multiple mechanisms.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources