Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1976 Sep 25;251(18):5786-92.

Collagen cross-linking. Synthesis of collagen cross-links in vitro with highly purified lysyl oxidase

  • PMID: 9402
Free article

Collagen cross-linking. Synthesis of collagen cross-links in vitro with highly purified lysyl oxidase

R C Siegel. J Biol Chem. .
Free article

Abstract

In this paper, the synthesis of collagen cross-links in vitro was investigated in a defined system consisting of highly purified chick cartilage lysyl oxidase and chick bone collagen fibrils. Cross-link synthesis in vitro was quite similar to the biosynthesis of collagen cross-links in vivo. Enzyme-dependent synthesis of cross-link intermediates and cross-linked collagen derived from lathyritic collagen occurred. The concentration of the two principal reducible cross-links, N6:6'-dehydro-5,5'-dihydroxylysinonorleucine and N6:6'-dehydro-5-hydroxylysinonorleucine, increased to a peak value of approximately two cross-links per molecule and then decreased. Synthesis of histidinohydroxymerodesmosine and a second polyfunctional cross-link of unknown structure began after synthesis of bifunctional cross-links was largely completed and proceeded linearly afterwards. Inhibition of lysyl oxidase after the bulk of bifunctional cross-link synthesis had occurred did not alter the rate of decrease in reducible cross-link concentration but did inhibit further histidinohydroxymerodesmosine synthesis. These results indicate that lysyl oxidase and collagen fibrils are the only macromolecules required for cross-link biosynthesis in vivo. It is likely that the decrease in reducible cross-links observed during fibril maturation results from spontaneous reactions within the collagen fibril rather than additional enzymatic reactions.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources