Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Dec 5;272(49):30866-72.
doi: 10.1074/jbc.272.49.30866.

Dimerization properties of human BAD. Identification of a BH-3 domain and analysis of its binding to mutant BCL-2 and BCL-XL proteins

Affiliations
Free article

Dimerization properties of human BAD. Identification of a BH-3 domain and analysis of its binding to mutant BCL-2 and BCL-XL proteins

S Ottilie et al. J Biol Chem. .
Free article

Abstract

Bad, an inducer of programmed cell death, was recently isolated from a mouse cDNA library by its ability to bind to the anti-apoptotic protein BCL-2. Sequence analysis suggested that Bad was a member of the BCL-2 gene family that encodes both inducers and inhibitors of programmed cell death. To further analyze the role of BAD in the network of homo- and heterodimers formed by the BCL-2 family, we have cloned the human homologue of BAD and assessed its biological activity and its interactions with wild type and mutant BCL-2 family proteins. Our results indicate that the human BAD protein, like its mouse homologue, is able to induce apoptosis when transfected into mammalian cells. Furthermore, in yeast two-hybrid assays as well as quantitative in vitro interaction assays, human Bad interacted with BCL-2 and BCL-XL. Sequence alignments of human BAD revealed the presence of a BH-3 homology domain as seen in other BCL-2 family proteins. Peptides derived from this domain were able to completely inhibit the dimerization of BAD with BCL-XL. Thus, as previously shown for BAX, BAK, BCL-2, and BCL-XL, the BH3 domain of BAD is required for its dimerization with other BCL-2 family proteins. BAD was further analyzed for its ability to bind to various mutants of BCL-2 and BCL-XL that have lost the ability to bind BAX and BAK, some of which retain biological activity and some of which do not. Surprisingly, all of the mutated BCL-2 and BCL-XL proteins analyzed strongly interacted with human BAD. Our data thus indicate that mutations in BCL-2 and BCL-XL can differentially affect the heterodimeric binding of different death-promoting proteins and have implications concerning the relationship between heterodimerization and biological activity.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Associated data