Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 May;68(5):2216-9.
doi: 10.1046/j.1471-4159.1997.68052216.x.

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) decreases glutamate uptake in cultured astrocytes

Affiliations
Free article

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) decreases glutamate uptake in cultured astrocytes

A S Hazell et al. J Neurochem. 1997 May.
Free article

Abstract

The deleterious effect of the parkinsonian neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on dopaminergic neurons of the substantia nigra is well established. In addition, increased glutamatergic drive to basal ganglia output nuclei is considered a likely contributor to the pathogenesis of Parkinson's disease. One possibility for the increased excitatory tone may be related to an impairment in glutamate uptake. As astrocytes possess efficient transport mechanisms for both MPTP and glutamate, we have examined the effect of this agent on D-aspartate uptake into these cells. Treatment of cultures with 50 microM MPTP for 24 h decreased uptake by 39%. Kinetic analysis revealed that this effect was due to a 35% decrease in Vmax with no change in the Km. Treatment with deprenyl, a monoamine oxidase B inhibitor, produced a complete reversal of MPTP-induced uptake inhibition, but was ineffective following exposure of cells to the MPTP metabolite, 1-methyl-4-phenylpyridinium (MPP+). Removal of MPTP from cultures resulted in a complete restoration of glutamate uptake after 24 h. These results show that MPTP reversibly compromises glutamate uptake in cultured astrocytes, which is dependent on the conversion of MPTP to MPP+. Such findings suggest that the glutamate transporter in astrocytes plays an important role in MPTP-induced neurotoxicity and possibly in parkinsonism.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources