Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Apr 18;272(16):10678-84.
doi: 10.1074/jbc.272.16.10678.

Antibody humanization using monovalent phage display

Affiliations
Free article

Antibody humanization using monovalent phage display

M Baca et al. J Biol Chem. .
Free article

Abstract

Antibody humanization often requires the replacement of key residues in the framework regions with corresponding residues from the parent non-human antibody. These changes are in addition to grafting of the antigen-binding loops. Although guided by molecular modeling, assessment of which framework changes are beneficial to antigen binding usually requires the analysis of many different antibody mutants. Here we describe a phage display method for optimizing the framework of humanized antibodies by random mutagenesis of important framework residues. We have applied this method to humanization of the anti-vascular endothelial growth factor murine monoclonal antibody A4.6.1. Affinity panning of a library of humanized A4.6.1 antibody mutants led to the selection of one variant with greater than 125-fold enhanced affinity for antigen relative to the initial humanized antibody with no framework changes. A single additional mutation gave a further 6-fold improvement in binding. The affinity of this variant, 9.3 nM, was only 6-fold weaker than that of a murine/human chimera of A4.6.1. This method provides a general means of rapidly selecting framework mutations that improve the binding of humanized antibodies to their cognate antigens and may prove an attractive alternative to current methods of framework optimization based on cycles of site-directed mutagenesis.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources