Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Oct 29;93(22):12428-32.
doi: 10.1073/pnas.93.22.12428.

Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression

Affiliations

Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression

S Ozcan et al. Proc Natl Acad Sci U S A. .

Abstract

Glucose is the preferred carbon source for most eukaryotic cells and has profound effects on many cellular functions. How cells sense glucose and transduce a signal into the cell is a fundamental, unanswered question. Here we describe evidence that two unusual glucose transporters in the yeast Saccharomyces cerevisiae serve as glucose sensors that generate an intracellular glucose signal. The Snf3p high-affinity glucose transporter appears to function as a low glucose sensor, since it is required for induction of expression of several hexose transporter (HXT) genes, encoding glucose transporters, by low levels of glucose. We have identified another apparent glucose transporter, Rgt2p, that is strikingly similar to Snf3p and is required for maximal induction of gene expression in response to high levels of glucose. This suggests that Rgt2p is a high glucose-sensing counterpart to Snf3p. We identified a dominant mutation in RGT2 that causes constitutive expression of several HXT genes, even in the absence of the inducer glucose. This same mutation introduced into SNF3 also causes glucose-independent expression of HXT genes. Thus, the Rgt2p and Snf3p glucose transporters appear to act as glucose receptors that generate an intracellular glucose signal, suggesting that glucose signaling in yeast is a receptor-mediated process.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Bacteriol. 1984 Sep;159(3):1013-7 - PubMed
    1. Mol Cell Biol. 1996 Oct;16(10):5536-45 - PubMed
    1. Science. 1985 Sep 6;229(4717):941-5 - PubMed
    1. Mol Cell Biol. 1986 Nov;6(11):3569-74 - PubMed
    1. Gene. 1986;45(3):299-310 - PubMed

Publication types

MeSH terms

Substances

Associated data