Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events
- PMID: 8770203
- PMCID: PMC1224925
- DOI: 10.1016/S0006-3495(96)79568-1
Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events
Abstract
We present here a maximal likelihood algorithm for estimating single-channel kinetic parameters from idealized patch-clamp data. The algorithm takes into account missed events caused by limited time resolution of the recording system. Assuming a fixed dead time, we derive an explicit expression for the corrected transition rate matrix by generalizing the theory of Roux and Sauve (1985, Biophys. J. 48:149-158) to the case of multiple conductance levels. We use a variable metric optimizer with analytical derivatives for rapidly maximizing the likelihood. The algorithm is applicable to data containing substates and multiple identical or nonidentical channels. It allows multiple data sets obtained under different experimental conditions, e.g., concentration, voltage, and force, to be fit simultaneously. It also permits a variety of constraints on rate constants and provides standard errors for all estimates of model parameters. The algorithm has been tested extensively on a variety of kinetic models with both simulated and experimental data. It is very efficient and robust; rate constants for a multistate model can often be extracted in a processing time of approximately 1 min, largely independent of the starting values.
Similar articles
-
Rapid kinetic analysis of multichannel records by a simultaneous fit to all dwell-time histograms.Biophys J. 2000 Feb;78(2):785-99. doi: 10.1016/S0006-3495(00)76636-7. Biophys J. 2000. PMID: 10653791 Free PMC article.
-
A new algorithm for idealizing single ion channel data containing multiple unknown conductance levels.Biophys J. 1996 Mar;70(3):1303-15. doi: 10.1016/S0006-3495(96)79687-X. Biophys J. 1996. PMID: 8785286 Free PMC article.
-
A direct optimization approach to hidden Markov modeling for single channel kinetics.Biophys J. 2000 Oct;79(4):1915-27. doi: 10.1016/S0006-3495(00)76441-1. Biophys J. 2000. PMID: 11023897 Free PMC article.
-
Molecular aspects of electrical excitation in lipid bilayers and cell membranes.Horiz Biochem Biophys. 1976;2:230-84. Horiz Biochem Biophys. 1976. PMID: 776770 Review.
-
A Life of Biophysics.Annu Rev Biophys. 2022 May 9;51:1-17. doi: 10.1146/annurev-biophys-120121-074034. Epub 2021 Dec 21. Annu Rev Biophys. 2022. PMID: 34932910 Review.
Cited by
-
Optimal estimation of ion-channel kinetics from macroscopic currents.PLoS One. 2012;7(4):e35208. doi: 10.1371/journal.pone.0035208. Epub 2012 Apr 20. PLoS One. 2012. PMID: 22536358 Free PMC article.
-
MCMC can detect nonidentifiable models.Biophys J. 2012 Dec 5;103(11):2275-86. doi: 10.1016/j.bpj.2012.10.024. Biophys J. 2012. PMID: 23283226 Free PMC article.
-
Gating reaction mechanisms for NMDA receptor channels.J Neurosci. 2005 Aug 31;25(35):7914-23. doi: 10.1523/JNEUROSCI.1471-05.2005. J Neurosci. 2005. PMID: 16135748 Free PMC article.
-
A quantitative description of KcsA gating II: single-channel currents.J Gen Physiol. 2007 Nov;130(5):479-96. doi: 10.1085/jgp.200709844. Epub 2007 Oct 15. J Gen Physiol. 2007. PMID: 17938231 Free PMC article.
-
Hydrogen bonding between the 17beta-substituent of a neurosteroid and the GABA(A) receptor is not obligatory for channel potentiation.Br J Pharmacol. 2009 Nov;158(5):1322-9. doi: 10.1111/j.1476-5381.2009.00390.x. Epub 2009 Aug 20. Br J Pharmacol. 2009. PMID: 19702782 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources