Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Feb 2;271(5):2641-5.
doi: 10.1074/jbc.271.5.2641.

Heat-induced chaperone activity of HSP90

Affiliations
Free article

Heat-induced chaperone activity of HSP90

M Yonehara et al. J Biol Chem. .
Free article

Abstract

The 90-kDa stress protein, HSP90, is a major cytosolic protein ubiquitously distributed in all species. Using two substrate proteins, dihydrofolate reductase (DHFR) and firefly luciferase, we demonstrate here that HSP90 newly acquires a chaperone activity when incubated at temperatures higher than 46 degrees C, which is coupled with self-oligomerization of HSP90. While chemically denatured DHFR refolds spontaneously upon dilution from denaturant, oligomerized HSP90 bound DHFR during the process of refolding and prevented it from renaturation. DHFR was released from the complex with HSP90 by incubating with GroEL/ES complexes in an ATP-dependent manner and refolded into the native form. alpha-Casein inhibited the binding of DHFR to HSP90 and also chased DHFR from the complex with HSP90. These results suggest that HSP90 binds substrates to maintain them in a folding-competent structure. Furthermore, we found that HSP90 prevents luciferase from irreversible thermal denaturation and enables it to refold when postincubated with reticulocyte lysates. This heat-induced chaperone activity of HSP90 associated with its oligomerization may have a pivotal role in protection of cells from thermal damages.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources