Leukemia and lymphoma in ataxia telangiectasia
- PMID: 8555463
Leukemia and lymphoma in ataxia telangiectasia
Abstract
There is a large increase in lymphoid malignancy in A-T patients and a total absence of myeloid tumors. Penetrance of the tumor phenotype is about 10% to 15% by early adulthood. The increase in lymphoid malignancy includes both B- and T-cell tumors. However, young A-T patients do not show an increased susceptibility to cALL, and the UK data suggest that B-cell lymphoma occurs in older A-T children. T-cell tumors may occur at any age and may be T-ALL, T-cell lymphoma, or T-PLL; most strikingly, there may be a fourfold to fivefold increased frequency of T-cell tumors compared with that of B-cell tumors in these patients. If this is correct, it is possible that a significant proportion of all T-ALL/T-cell lymphoma in infants might be associated with undiagnosed A-T. The age range and sex predominance for T-ALL may be different for A-T and non-A-T patients and the age range for T-PLL may also be different in A-T and non-A-T patients. There is clearly some uncertainty concerning the ratio of T-cell to B-cell tumors in A-T, but this could be clarified by the publication of all tumors that occur in the disorder. In contrast, 8 of 9 tumors reported in NBS, which shows the same cellular features as A-T, were lymphomas and none was a leukemia. There are several indicators of genetic heterogeneity in A-T that suggest that not all patients are equally susceptible to all T-cell tumor types. Concordance for tumor type within individual families suggests that particular gene defects may be associated with particular tumor types. The logical extrapolation of this argument is that some patients may not have any increased risk for B-cell tumors at all or even to all T-cell types but only to a particular type of T-cell tumor. What is the cause of the increased predisposition to leukemia/lymphoma in A-T patients? There is no evidence that the immunodeficiency in A-T is related to this predisposition. One of the major findings in all A-T patients is the increase in V(D)J-mediated chromosome rearrangement observed in T lymphocytes. Particular chromosome translocations in T cells, involving a break in a TCR gene, are characteristically associated with either T-ALL or T-PLL in non-A-T patients. The majority of T-cell tumors in A-T are T-ALL and T-cell lymphoma, about which virtually nothing is known chromosomally, and the assumption is that the increased number of translocations leads to the increased level of these tumors. In older T patients, the expansion of specific translocation T-cell clones has been followed to the point to which they develop into T-PLL. All the evidence, therefore, suggests that the A-T mutation in the homozygous state allows a large increase in production of translocations formed at the time of V(D)J recombination, and this leads to the increased predisposition to leukemia. The general increased predisposition to T-cell tumors compared with B-cell tumors in A-T patients may be related to a preferential occurrence of translocations in T cells. Relatively little is known about translocations in circulating B lymphocytes in normal individuals, but A-T siblings have been shown to have clonal chromosome rearrangements of both B and T cells, simultaneously, although in these siblings the T-cell clones occupied all the T-cell compartment and the B-cell clones were small. An important inference from these facts is that the A-T defect preferentially affects immune system gene recombination in T cells rather than B cells. Recent evidence suggests that the V(D)J recombination machinery is not identical or is not regulated identically in T- and B-cell progenitors. This finding is consistent with the hypothesis that V(D)J rejoining in the majority, at least, of A-T patients may be preferentially deficient in T cells compared with B cells giving rise to the greatly increased number of translocations and T-cell tumors. Carbonari et al proposed that the recombination defect in A-T cells affected both Ig isotype switching and TCR rearrangeme
Similar articles
-
Chromosome changes connect immunodeficiency and cancer in ataxia-telangiectasia.Am J Pediatr Hematol Oncol. 1987 Summer;9(2):185-8. doi: 10.1097/00043426-198722000-00018. Am J Pediatr Hematol Oncol. 1987. PMID: 3496017
-
Tcrδ translocations that delete the Bcl11b haploinsufficient tumor suppressor gene promote atm-deficient T cell acute lymphoblastic leukemia.Cell Cycle. 2014;13(19):3076-82. doi: 10.4161/15384101.2014.949144. Cell Cycle. 2014. PMID: 25486566 Free PMC article.
-
Abnormal rearrangement within the alpha/delta T-cell receptor locus in lymphomas from Atm-deficient mice.Blood. 2000 Sep 1;96(5):1940-6. Blood. 2000. PMID: 10961898
-
Inversions and tandem translocations involving chromosome 14q11 and 14q32 in T-prolymphocytic leukemia and T-cell leukemias in patients with ataxia telangiectasia.Cancer Genet Cytogenet. 1991 Aug;55(1):1-9. doi: 10.1016/0165-4608(91)90228-m. Cancer Genet Cytogenet. 1991. PMID: 1913594 Review.
-
Cancer susceptibility in ataxia-telangiectasia.Leukemia. 1992;6 Suppl 1:8-13. Leukemia. 1992. PMID: 1548942 Review.
Cited by
-
p38 (MAPK) stress signalling in replicative senescence in fibroblasts from progeroid and genomic instability syndromes.Biogerontology. 2013 Feb;14(1):47-62. doi: 10.1007/s10522-012-9407-2. Epub 2012 Oct 31. Biogerontology. 2013. PMID: 23112078 Free PMC article.
-
Targeting the DNA damage response in hematological malignancies.Front Oncol. 2024 Jan 29;14:1307839. doi: 10.3389/fonc.2024.1307839. eCollection 2024. Front Oncol. 2024. PMID: 38347838 Free PMC article. Review.
-
Random walk with restart on multilayer networks: from node prioritisation to supervised link prediction and beyond.BMC Bioinformatics. 2024 Feb 14;25(1):70. doi: 10.1186/s12859-024-05683-z. BMC Bioinformatics. 2024. PMID: 38355439 Free PMC article.
-
Cancers Related to Immunodeficiencies: Update and Perspectives.Front Immunol. 2016 Sep 20;7:365. doi: 10.3389/fimmu.2016.00365. eCollection 2016. Front Immunol. 2016. PMID: 27703456 Free PMC article. Review.
-
Dynamic coregulatory complex containing BRCA1, E2F1 and CtIP controls ATM transcription.Cell Physiol Biochem. 2012;30(3):596-608. doi: 10.1159/000341441. Epub 2012 Jul 27. Cell Physiol Biochem. 2012. PMID: 22832221 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Research Materials
Miscellaneous