Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1995 Dec 15;270(50):30157-61.
doi: 10.1074/jbc.270.50.30157.

A second osmosensing signal transduction pathway in yeast. Hypotonic shock activates the PKC1 protein kinase-regulated cell integrity pathway

Affiliations
Free article
Comparative Study

A second osmosensing signal transduction pathway in yeast. Hypotonic shock activates the PKC1 protein kinase-regulated cell integrity pathway

K R Davenport et al. J Biol Chem. .
Free article

Abstract

Yeast cells respond to hypertonic shock by activation of a (MAP) mitogen-activated protein kinase cascade called the (HOG) high osmolarity glycerol response pathway. How yeast respond to hypotonic shock is unknown. Results of this investigation show that a second MAP kinase cascade in yeast called the protein kinase C1 (PKC1) pathway is activated by hypotonic shock. Tyrosine phosphorylation of the PKC1 pathway MAP kinase increased rapidly in cells following a shift of the external medium to lower osmolarity. The intensity of the response was proportional to the magnitude of the decrease in extracellular osmolarity. This response to hypotonic shock required upstream protein kinases of the PKC1 pathway. Increasing external osmolarity inhibited tyrosine phosphorylation of the PKC1 pathway MAP kinase, a response that was blocked by BCK1-20, a constitutively active mutant in an upstream protein kinase. These results indicate that yeast contain two osmosensing signal transduction pathways, the HOG pathway and the PKC1 pathway, that respond to hypertonic and hypotonic shock, respectively.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources