Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Dec;131(6 Pt 1):1421-33.
doi: 10.1083/jcb.131.6.1421.

Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps

Affiliations

Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps

P A Conrad et al. J Cell Biol. 1995 Dec.

Abstract

Caveolin is a protein associated with the characteristic coats that decorate the cytoplasmic face of plasma membrane caveolae. Recently it was found that exposure of human fibroblasts to cholesterol oxidase (CO) rapidly induces caveolin to redistribute to the ER and then to the Golgi complex, and that subsequent removal of CO allows caveolin to return to the plasma membrane (Smart, E. J., Y.-S. Ying, P. A. Conrad, R. G. W. Anderson, J. Cell Biol. 1994, 127:1185-1197). We now present evidence that caveolin normally undergoes microtubule-dependent cycling between the plasma membrane and the Golgi. In cells that were treated briefly with nocodazole and then with a mixture of nocodazole plus CO, caveolin relocated from the plasma membrane to the ER and then to the ER/Golgi intermediate compartment (ERGIC), but subsequent movement to the Golgi was not observed. Even in the absence of CO, nocodazole caused caveolin to accumulate in the ERGIC. Nocodazole did not retard the movement of caveolin from the Golgi to the plasma membrane after removal of CO. Incubation of cells at 15 degrees followed by elevation of the temperature to 37 degrees caused caveolin to accumulate first in the ERGIC and then in the Golgi, before finally reestablishing its normal steady state distribution predominantly in plasma membrane caveolae. In cells released from a 15 degrees block, movement of caveolin from the Golgi to the plasma membrane was not inhibited by nocodazole. Taken together, these results imply that caveolin cycles constitutively between the plasma membrane and the Golgi by a multi-step process, one of which, ERGIC-to-Golgi transport, requires microtubules. This novel, bidirectional pathway may indicate roles for microtubules in the maintenance of caveolae, and for caveolin in shuttling fatty acids and cholesterol between the plasma membrane and the ER/Golgi system.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Cell Biol. 1987 Sep;105(3):1253-65 - PubMed
    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed
    1. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1921-5 - PubMed
    1. Eur J Cell Biol. 1990 Dec;53(2):185-96 - PubMed
    1. Cell. 1991 Feb 8;64(3):649-65 - PubMed

Publication types

MeSH terms