Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Feb 21;160(4):471-91.
doi: 10.1006/jtbi.1993.1031.

Somatic mutation, monoclonality and stochastic models of stem cell organization in the intestinal crypt

Affiliations

Somatic mutation, monoclonality and stochastic models of stem cell organization in the intestinal crypt

M Loeffler et al. J Theor Biol. .

Abstract

Among highly proliferating tissues the intestinal tissue is of particular interest. Techniques are available that permit an insight into how intestinal crypts as the basic macroscopic tissue unit are regenerated from a small population of self-maintaining stem cells. However, neither the precise number of these stem cells nor their properties are known. We have recently suggested a model of stem cell organization which explains the life cycle of murine intestinal crypts, their birth (by crypt fission) and extinction rates, as well as their size distribution on a quantitative basis (Loeffler & Grossman, 1991). The model assumptions involve two stochastic branching processes, one for the growth of several independent indistinguishable stem cells and a second for a threshold dependent crypt fission process. New data have now become available challenging the above concept. They relate to the conversion of crypts to monoclonal phenotypic expression after mutagenic events, presumably taking place in single stem cells. A detailed analysis of these data is shown here utilizing a more elaborate version of the above model. The new data are consistent with this model within the range of parameters predicted previously. We conclude that the cellular regeneration of intestinal crypts can be explained on the basis of several indistinguishable stem cells which can replace each other.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources