Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1993 Feb 17;1175(3):277-82.
doi: 10.1016/0167-4889(93)90217-d.

Increased accumulation of drugs in a multidrug resistant cell line by alteration of membrane biophysical properties

Affiliations
Comparative Study

Increased accumulation of drugs in a multidrug resistant cell line by alteration of membrane biophysical properties

R Callaghan et al. Biochim Biophys Acta. .

Abstract

Growth of CHRC5 multidrug resistant cells in media enriched in a saturated C-17 fatty acid, heptadecanoic acid, resulted in these cells accumulating vinblastine at a rate and to an extent comparable to that of the parental cell line AB1. The fatty acid-enriched growth media had no effect on the ability of AB1 cells to take up vinblastine. The action of amphiphiles on the uptake of rhodamine dyes by CHRC5 cells was compared with the increased dye accumulation affected by verapamil. Membrane rigidifying agents, such as the saturated fatty acid stearic acid, or the cholesterol derivatives, cholesteryl hemisuccinate and cholesteryl phosphorylcholine, as well as a membrane fluidizing unsaturated fatty acid, linoleic acid, could significantly increase dye uptake, although not as well as verapamil. These results taken in conjunction with other reports in the literature, demonstrate that multidrug resistance is sensitive to alterations of membrane properties. They suggest that perturbation of the membrane to either increased or to decreased membrane fluidity can lower the level of resistance.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources