Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jan;52(1):1-6.
doi: 10.1016/0306-4522(93)90175-f.

Glutathione peroxidase, glial cells and Parkinson's disease

Affiliations

Glutathione peroxidase, glial cells and Parkinson's disease

P Damier et al. Neuroscience. 1993 Jan.

Abstract

Hyperoxidation phenomena are suspected to be involved in dopaminergic cell death in Parkinson's disease, which affects preferentially the neuromelanin-containing dopaminergic neurons of the substantia nigra. Glutathione peroxidase is the major protective enzyme against hydrogen peroxide toxicity. The distribution of glutathione peroxidase-containing cells was investigated by immunohistochemistry in the midbrain of four control subjects and four patients with Parkinson's disease. (1) Glutathione peroxidase-like immunoreactivity was detected exclusively in glial cells. (2) In control brains, the density of glutathione peroxidase-positive cells was higher in the vicinity of the dopaminergic cell groups known to be resistant to the pathological process of Parkinson's disease. (3) In Parkinson's disease, an increased density of glutathione peroxidase-immunostained cells was observed, surrounding the surviving dopaminergic neurons. The increase in glutathione peroxidase-containing cells was correlated with the severity in dopaminergic cell loss in the respective cell groups. The data suggest that in control brains, a low density of glutathione peroxidase-positive cells surround the dopaminergic neurons the most vulnerable to Parkinson's disease, and that in parkinsonian brains, the increased number of glutathione peroxidase-positive cells may contribute to protect neurons against pathological death. Thus, the amount of glutathione peroxidase protein-containing cells may be critical for a protective effect against oxidative stress, although it cannot be excluded that the level of the enzyme activity remains the crucial factor.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources