Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jan 15;268(2):775-8.

GDP dissociation inhibitor prevents intrinsic and GTPase activating protein-stimulated GTP hydrolysis by the Rac GTP-binding protein

Affiliations
  • PMID: 8419353
Free article

GDP dissociation inhibitor prevents intrinsic and GTPase activating protein-stimulated GTP hydrolysis by the Rac GTP-binding protein

T H Chuang et al. J Biol Chem. .
Free article

Abstract

The majority of the GTP-binding proteins of the Ras superfamily hydrolyze GTP to GDP very slowly. A notable exception to this are the Rac proteins, which have intrinsic GTPase rates at least 50-fold those of Ras or Rho. A protein (or proteins) capable of inhibiting this GTPase activity exists in human neutrophil cytosol. Since Rac appears to exist normally in neutrophils as a cytosolic protein complexed to (Rho)GDI, we examined the ability of (Rho)GDI to inhibit GTP hydrolysis by Rac. (Rho)GDI produced a concentration-dependent inhibition of GTP hydrolysis by Rac1 that paralleled its ability to inhibit GDP dissociation from the Rac protein. Maximal inhibition occurred at or near equimolar concentrations of the GDI and the Rac substrate. The ability of two molecules exhibiting GTPase activating protein (GAP) activity toward Rac to stimulate GTP hydrolysis was also inhibited by the presence of (Rho)GDI. The inhibitory effect of the GDI could be overcome by increasing the GAP concentration to levels equal to that of the GDI. (Rho)GDI weakly, but consistently, inhibited GTP gamma S (guanosine 5'-3-O-(thio)triphosphate) dissociation from Rac1, confirming an interaction of (Rho)GDI with the GTP-bound form of the protein. These data describe an additional activity of (Rho)GDI and suggest a mechanism by which Rac might be maintained in an active form in vivo in the presence of regulatory GAPs.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources