Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Jul;70(1):128-43.
doi: 10.1152/jn.1993.70.1.128.

Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II

Affiliations

Differential electroresponsiveness of stellate and pyramidal-like cells of medial entorhinal cortex layer II

A Alonso et al. J Neurophysiol. 1993 Jul.

Abstract

1. The electroresponsive properties of neurons from layer II of the rat medial entorhinal cortex (MEC) were studied by intracellular recording under current clamp in an in vitro brain slice preparation. From a total of 184 cells that fulfilled our criteria for recording stability, two groups of projection neurons were distinguished on the basis of their intrinsic biophysical properties and morphological characteristics (demonstrated by intracellular biocytin injection; n = 34). 2. Stellate cells (SCs) were the most abundant (69%). They were highly electroresponsive, and minimal changes (1-3 mV) of membrane potential generated an active response. Subthreshold depolarizing or hyperpolarizing current pulse injection always caused the membrane potential to attain an early peak and then sag to a lower level. Depolarization-induced "sags" were larger and determined early firing in all cells. The voltage-current relationship of SCs was markedly non-linear, demonstrating robust inward rectification in the hyperpolarizing and depolarizing range. 3. SCs generated persistent rhythmic subthreshold voltage oscillations on DC depolarization positive to -60 mV. The mean frequency of the oscillations was 8.6 Hz (theta range) at a membrane potential of approximately -55 mV, at which level occasional single spiking also occurred. At slightly more positive potentials, a striking 1- to 3-Hz repetitive bursting pattern emerged. This consisted of nonadapting trains of spikes ("clusters") interspersed with subthreshold oscillations that had a mean frequency of 21.7 Hz (beta range). 4. Nonstellate cells (39%; mostly pyramidal-like) displayed time-dependent inward rectification that was less pronounced than that of SCs, and minimal depolarization-induced sags. On threshold depolarization, firing was always preceded by a slowly rising ramp depolarization and thus occurred with a long delay. Inward rectification in the depolarizing range was very pronounced. However, non-SCs did not generate persistent rhythmic subthreshold oscillatory activity or spike clusters. 5. Of the electrophysiological parameters quantified, spike threshold, spike duration, depolarizing afterpotential amplitude and apparent membrane time constant demonstrated statistically significant differences between SCs and non-SCs. 6. The repetitive hiring properties in response to square current pulses of short duration (< 500 ms) were also different between SCs and non-SCs. First, most SCs displayed a bilinear frequency-current (f-I) relationship for only the first interspike interval, whereas most non-SCs displayed a bilinear relationship for all intervals. Second, SCs had a much steeper primary f-I slope for early intervals than non-SCs. Finally, SCs displayed more pronounced and faster spike frequency adaptation than non-SCs.(ABSTRACT TRUNCATED AT 400 WORDS)

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources