Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Apr;14(4):351-60.
doi: 10.1016/0891-5849(93)90084-8.

Reactive nitrogen intermediates and antimicrobial activity: role of nitrite

Affiliations

Reactive nitrogen intermediates and antimicrobial activity: role of nitrite

S J Klebanoff. Free Radic Biol Med. 1993 Apr.

Abstract

The reactive nitrogen intermediate (RNI) nitric oxide (NO.) is formed from L-arginine by an NO. synthase and, following secondary reactions yielding additional toxic intermediates, nitrite (NO2-) and nitrate are formed. Nitrite, however, also has toxic properties. At acid pH, nitrous acid (HNO2) is bactericidal to Escherichia coli, in association with the loss of HNO2/NO2- and the uptake of oxygen, an effect which is increased by H2O2. Under conditions in which HNO2/NO2- +/- H2O2 were ineffective, the further addition of peroxidase (myeloperoxidase [MPO], eosinophil peroxidase, lactoperoxidase) or catalase resulted in bactericidal activity and the disappearance of HNO2/NO2-. Paradoxically, HNO2/NO2- also inhibited the bactericidal activity of MPO by the formation of a complex with MPO with a shift in the absorption spectrum, and by reaction with hypochlorous acid (HOCl) (the product of the chloride-supplemented MPO-H2O2 system), with loss of the bactericidal activity of HOCl and the disappearance of both HOCl and HNO2/NO2- from the reaction mixture. Thus, HNO2/NO2-, rather than being solely an end product of RNI formation, may influence antimicrobial activity either by acting alone, with H2O2, or with H2O2 and peroxidase as a source of toxic agents, or by inhibiting the peroxidase-mediated antimicrobial systems.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources