Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Apr 20;1191(1):65-78.
doi: 10.1016/0005-2736(94)90234-8.

Re-examination of hexose exchanges using rat erythrocytes: evidence inconsistent with a one-site sequential exchange model, but consistent with a two-site simultaneous exchange model

Affiliations

Re-examination of hexose exchanges using rat erythrocytes: evidence inconsistent with a one-site sequential exchange model, but consistent with a two-site simultaneous exchange model

R J Naftalin et al. Biochim Biophys Acta. .

Abstract

(1). The kinetic parameters of zero-trans net uptake and infinite-trans uptake of 3-O-methyl-D-glucoside, 2-deoxy-D-glucose and D-mannose into rat red cells at 24 degrees C were measured after taking account of the linear diffusion components of flux. (2). Zero-trans exists of 3-O-methyl-D-glucoside and D-mannose from rat cells were also measured. (3). After correction for linear flux via non-specific routes, the Vmax of zero-trans uptake of 3-O-methyl-D-glucoside was significantly higher, (1.25 +/- 0.06 mumol (10 min)-1 (ml cell water)-1) than the corresponding parameters of mannose or 2-deoxy-D-glucose, (0.33 +/- 0.01 and 0.39 +/- 0.01 mumol(10 min)-1 (ml cell water)-1, respectively; P < 0.001). (4). After correction for linear flux via non-specific uptake routes, the Vmax of zero-trans exit of 3-O-methyl-D-glucoside is significantly higher (1.70 +/- 0.1 mumol (10 min)-1 (ml cell water)-1) than the corresponding value for mannose exit flux, (1.10 +/- 0.1 mumol (10 min)-1 (ml cell water)-1; P < 0.001). (5). The acceleration ratio, i.e., the ratio of infinite-trans influx Vmax/zero-trans influx Vmax of mannose by mannose (9.12 +/- 0.03) is significantly higher than that of 3-O-methyl-D-glucose by 3-O-methyl-D-glucose (2.77 +/- 0.14)(P < 0.001). (6). The one-site simple carrier model of glucose transport in which sugar exchange is viewed as a sequential process, predicts that the acceleration ratio of the more rapidly moving sugar 3-O-methyl-D-glucose by 3-O-methyl-D-glucose should be greater than that of the slower sugar, mannose by mannose. Hence, the observed findings are inconsistent with the one-site model, but confirm the earlier disputed studies of Miller, D.M. (1968; Biophys. J. 8, 1329-1338). (7). A two-site model, in which sugar exchange is considered as a simultaneous process, predicts that the acceleration ratio of mannose influx by mannose should be higher than for 3-O-methyl-D-glucose by 3-O-methyl-D-glucose. The data are, therefore, consistent with a two-site model.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources