Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1994 Feb;43(2):263-73.
doi: 10.2337/diab.43.2.263.

Regulation of islet beta-cell proliferation by prolactin in rat islets

Affiliations

Regulation of islet beta-cell proliferation by prolactin in rat islets

T C Brelje et al. Diabetes. 1994 Feb.

Abstract

This study examined the effects of prolactin on beta-cell proliferation in pancreatic islet of Langerhans. Insulin secretion and beta-cell proliferation were significantly increased from neonatal rat islets cultured for 4 days in the presence of either 500 ng/ml ovine prolactin (oPRL) or rat prolactin (rPRL). These effects could be prevented by including anti-oPRL serum in the culture media. Although insulin secretion and beta-cell proliferation were slightly higher during the first 24 h of exposure to rPRL, maximal response was observed after 4 days for insulin secretion and 6-10 days for beta-cell proliferation. The initial mitogenic response of beta-cell to rPRL occurred by the limited recruitment of nondividing beta-cells into the cell cycle and by most daughter cells proceeding directly into additional cell division cycles. Subsequently, the maximal effect of rPRL on beta-cell proliferation was maintained by a higher rate of recruitment of previously nondividing beta-cells into cell cycle with only one fourth of the daughter cells continuing to divide. These observations are difficult to reconcile with the proposal that a limited pool of beta-cells capable of undergoing cell division exists in islets. Instead, these observations suggest that individual beta-cells are transiently re-entering the cell cycle and dividing infrequently in response to rPRL. In this case, the majority of the beta-cells would not be expected to be in an irreversible Go phase. We also demonstrated that the effects of rPRL on beta-cell proliferation occur at normal serum glucose concentrations and are affected by inhibitors of polyamine metabolism. Additional studies on the effects of rPRL on beta-cells should provide important information on the regulation of beta-cell proliferation during conditions of increased insulin demand.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources