Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jan;128(1-2):5-14.
doi: 10.1083/jcb.128.1.5.

Depletion of calcium from the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus

Affiliations

Depletion of calcium from the lumen of endoplasmic reticulum reversibly inhibits passive diffusion and signal-mediated transport into the nucleus

U F Greber et al. J Cell Biol. 1995 Jan.

Abstract

Nuclear pore complexes provide channels for molecular transport across the nuclear envelope. Translocation of most proteins and RNAs through the pore complex is mediated by signal- and ATP-dependent mechanisms, while transport of small molecules is accomplished by passive diffusion. We report here that depletion of calcium from the lumen of the endoplasmic reticulum and nuclear envelope with ionophores or the calcium pump inhibitor thapsigargin rapidly and potently inhibits signal mediated transport of proteins into the nucleus. Lumenal calcium depletion also inhibits passive diffusion through the pore complex. Signal-mediated protein import and passive diffusion are rapidly restored when the drugs depleting lumenal calcium are removed and cells are incubated at 37 degrees C in calcium-containing medium. These results indicate that loss of calcium from the lumen of the endoplasmic reticulum and nuclear envelope reversibly affects properties of pore complex components located on the nuclear/cytoplasmic membrane surfaces, and they provide direct functional evidence for conformational flexibility of the pore complex. These methods will be useful for achieving reversible inhibition of nucleocytoplasmic trafficking for in vivo functional studies, and for studying the structure of the passive diffusion channel(s) of the pore complex.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Mol Cell Biol. 1988 Jan;8(1):393-405 - PubMed
    1. Cell. 1988 Mar 11;52(5):641-53 - PubMed
    1. Cell. 1988 Mar 11;52(5):655-64 - PubMed
    1. J Biol Chem. 1989 May 15;264(14):8171-8 - PubMed
    1. Methods Enzymol. 1992;219:223-34 - PubMed

Publication types

MeSH terms