Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1994 Sep;56(1):118-30.
doi: 10.1002/jcb.240560116.

Inhibition of bone resorption by selective inactivators of cysteine proteinases

Affiliations
Comparative Study

Inhibition of bone resorption by selective inactivators of cysteine proteinases

P A Hill et al. J Cell Biochem. 1994 Sep.

Abstract

Inactivators of cysteine proteinases (CPs) were tested as inhibitors of bone resorption in vitro and in vivo. The following four CP inactivators were tested: Ep475, a compound with low membrane permeability which inhibits cathepsins B, L, S, H, and calpain; Ep453, the membrane-permeant prodrug of Ep475; CA074, a compound with low membrane permeability which selectively inactivates cathepsin B; and CA074Me, the membrane-permeant prodrug of CA074. The test systems consisted of 1) monitoring the release of radioisotope from prelabelled mouse calvarial explants and 2) assessing the extent of bone resorption in an isolated osteoclast assay using confocal laser microscopy. Ep453, Ep475, and CA074Me inhibited both stimulated and basal bone resorption in vitro while CA074 was without effect; the inhibition was reversible and dose dependent. None of the inhibitors affected protein synthesis, DNA synthesis, the PTH-enhanced secretion of beta-glucuronidase, and N-acetyl-beta-glucosaminidase, or the spontaneous release of lactate dehydrogenase. Ep453, Ep475, and CA074Me dose-dependently inhibited the resorptive activity of isolated rat osteoclasts cultured on bone slices with a maximal effect at 50 microM. The number of resorption pits and their mean volume was reduced, whilst the mean surface area remained unaffected. Again, CA074 was without effect. Ep453, Ep475, and CA074Me, but not CA074, when administered subcutaneously at a dose of 60 micrograms/g body weight inhibited bone resorption in vivo as measured by an in vivo/in vitro assay, by about 20%. This study demonstrates that cathepsins B, L, and/or S are involved in bone resorption in vitro and in vivo. Whilst cathepsin L and/or S act extracellularly, and possibly intracellularly, cathepsin B mediates its effects intracellularly perhaps through the activation of other proteinases involved in subosteoclastic collagen degradation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources