A role of Sep1 (= Kem1, Xrn1) as a microtubule-associated protein in Saccharomyces cerevisiae
- PMID: 7720696
- PMCID: PMC398182
- DOI: 10.1002/j.1460-2075.1995.tb07088.x
A role of Sep1 (= Kem1, Xrn1) as a microtubule-associated protein in Saccharomyces cerevisiae
Abstract
Saccharomyces cerevisiae cells lacking the SEP1 (also known as XRN1, KEM1, DST2, RAR5) gene function exhibit a number of phenotypes in cellular processes related to microtubule function. Mutant cells show increased sensitivity to the microtubule-destabilizing drug benomyl, increased chromosome loss, a karyogamy defect, impaired spindle pole body separation, and defective nuclear migration towards the bud neck. Analysis of the arrest morphology and of the survival during arrest strongly suggests a structural defect accounting for the benomyl hypersensitivity, rather than a regulatory defect in a checkpoint. Biochemical analysis of the purified Sep1 protein demonstrates its ability to promote the polymerization of procine brain and authentic S.cerevisiae tubulin into flexible microtubules in vitro. Furthermore, Sep1 co-sediments with these microtubules in sucrose cushion centrifugation. Genetic analysis of double mutant strains containing a mutation in SEP1 and in one of the genes coding for alpha- or beta-tubulin further suggests interaction between Sep1 and microtubules. Taken together these three lines of evidence constitute compelling evidence for a role of Sep1 as an accessory protein in microtubule function in the yeast S.cerevisiae.
Similar articles
-
Identification of functional domains in the Sep1 protein (= Kem1, Xrn1), which is required for transition through meiotic prophase in Saccharomyces cerevisiae.Chromosoma. 1995 Nov;104(3):215-22. doi: 10.1007/BF00352186. Chromosoma. 1995. PMID: 8529461
-
The Saccharomyces cerevisiae kinesin-related motor Kar3p acts at preanaphase spindle poles to limit the number and length of cytoplasmic microtubules.J Cell Biol. 1997 Apr 21;137(2):417-31. doi: 10.1083/jcb.137.2.417. J Cell Biol. 1997. PMID: 9128252 Free PMC article.
-
ROK1, a high-copy-number plasmid suppressor of kem1, encodes a putative ATP-dependent RNA helicase in Saccharomyces cerevisiae.Gene. 1995 Dec 1;166(1):151-4. doi: 10.1016/0378-1119(96)80010-2. Gene. 1995. PMID: 8529880
-
Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control.Mol Cell Biol. 1995 May;15(5):2719-27. doi: 10.1128/MCB.15.5.2719. Mol Cell Biol. 1995. PMID: 7739552 Free PMC article.
-
Saccharomyces cerevisiae proteins involved in hybrid DNA formation in vitro.Biochimie. 1991 Feb-Mar;73(2-3):269-76. doi: 10.1016/0300-9084(91)90212-j. Biochimie. 1991. PMID: 1883885 Review.
Cited by
-
Identification of functional domains in the Sep1 protein (= Kem1, Xrn1), which is required for transition through meiotic prophase in Saccharomyces cerevisiae.Chromosoma. 1995 Nov;104(3):215-22. doi: 10.1007/BF00352186. Chromosoma. 1995. PMID: 8529461
-
Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae.Genetics. 1997 Jul;146(3):781-95. doi: 10.1093/genetics/146.3.781. Genetics. 1997. PMID: 9215887 Free PMC article.
-
Transcription feedback dynamics in the wake of cytoplasmic mRNA degradation shutdown.Nucleic Acids Res. 2022 Jun 10;50(10):5864-5880. doi: 10.1093/nar/gkac411. Nucleic Acids Res. 2022. PMID: 35640599 Free PMC article.
-
Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively.Mol Cell Biol. 1997 Oct;17(10):6122-30. doi: 10.1128/MCB.17.10.6122. Mol Cell Biol. 1997. PMID: 9315672 Free PMC article.
-
NDT80, a meiosis-specific gene required for exit from pachytene in Saccharomyces cerevisiae.Mol Cell Biol. 1995 Dec;15(12):6572-81. doi: 10.1128/MCB.15.12.6572. Mol Cell Biol. 1995. PMID: 8524222 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases