Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1995 Feb;5(2):103-9.
doi: 10.1007/BF00208801.

The nature of protein folding pathways: the classical versus the new view

Affiliations
Review

The nature of protein folding pathways: the classical versus the new view

R L Baldwin. J Biomol NMR. 1995 Feb.

Abstract

Pulsed hydrogen exchange and other studies of the kinetic refolding pathways of several small proteins have established that folding intermediates with native-like secondary structures are well populated, but these studies have also shown that the folding kinetics are not well synchronized. Older studies of the kinetics of formation of the native protein, monitored by optical probes, indicate that the folding kinetics should be synchronized. The model commonly used in these studies is the simple sequential model, which postulates a unique folding pathway with defined and sequential intermediates. Theories of the folding process and Monte Carlo simulations of folding suggest that neither the folding pathway nor the set of folding intermediates is unique, and that folding intermediates accumulate because of kinetic traps caused by partial misfolding. Recent experiments with cytochrome c lend support to this 'new view' of folding pathways. These different views of the folding process are discussed. Misfolding and consequent slowing down of the folding process as a result of cis-trans isomerization about prolyl peptide bonds in the unfolded protein are well known; isomerization occurs before refolding is initiated. The occurrence of equilibrium intermediates on the kinetic folding pathways of some proteins, such as alpha-lactalbumin and apomyoglobin, argues that these intermediates are not caused by kinetic traps but rather are stable intermediates under certain conditions, and this conclusion is consistent with a sequential model of folding. Folding reactions with successive kinetic intermediates, in which late intermediates are more highly folded than early intermediates, indicate that folding is hierarchical. New experiments that test the predictions of the classical and the new views are needed.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Science. 1990 Sep 28;249(4976):1544-8 - PubMed
    1. J Mol Biol. 1986 Sep 20;191(2):281-93 - PubMed
    1. Trends Biochem Sci. 1994 Jan;19(1):31-7 - PubMed
    1. Nature. 1994 May 19;369(6477):248-51 - PubMed
    1. Biochemistry. 1982 Jan 5;21(1):38-43 - PubMed

Publication types