Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1993 Aug 5;232(3):732-46.
doi: 10.1006/jmbi.1993.1427.

HIV-1 Tat overcomes inefficient transcriptional elongation in vitro

Affiliations
Free article

HIV-1 Tat overcomes inefficient transcriptional elongation in vitro

M F Laspia et al. J Mol Biol. .
Free article

Abstract

Tat, the transactivator protein encoded by HIV-1, acts in vivo to increase transcriptional initiation and stabilize elongation. We examined the effects of purified, bacterially-expressed Tat on HIV-1 transcription in a cell-free system. Tat specifically stimulated HIV-directed transcription 12-fold in HeLa cell nuclear extracts and this effect was principally due to increased transcriptional elongation. The degree of transactivation was greatest at later times during the transcription reaction when basal levels of transcription were reduced. At early times, the proportion of basal transcriptional complexes that elongate efficiently was high. Ongoing transcription increased the number of complexes requiring Tat for efficient elongation, possibly due to the activation of a repressor(s). To examine this hypothesis, the effects of the detergent Sarkosyl on HIV transcription were studied. Sarkosyl stimulated HIV-1 transcription to a level similar to that occurring in the presence of Tat alone by improving elongation. Transcription was elevated by Sarkosyl at concentrations inhibitory to reinitiation indicating that inefficient elongation is due to transcriptional pausing. Transcriptional stimulation by Sarkosyl was a general phenomenon as it was also observed with heterologous eukaryotic promoters. Tat was capable of stimulating elongation from a heterologous promoter when Tat binding was provided by a downstream TAR element. We propose that Tat acts as a general transcription factor whose binding at the promoter overcomes inefficient transcriptional elongation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources