Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Aug;48(2):352-61.

Activation of the human peripheral cannabinoid receptor results in inhibition of adenylyl cyclase

Affiliations
  • PMID: 7651369

Activation of the human peripheral cannabinoid receptor results in inhibition of adenylyl cyclase

D M Slipetz et al. Mol Pharmacol. 1995 Aug.

Abstract

The human peripheral cannabinoid (CB2) receptor has been cloned by reverse transcription-polymerase chain reaction from human spleen RNA and expressed, to study both ligand binding characteristics and signal transduction pathways. Receptor binding assays used the aminoalkylindole [3H]Win 55212-2 and membranes from transiently transfected COS-M6 cells. Saturation analysis showed that [3H]Win 55212-2 specific binding to the CB2 receptor was of high affinity, with a Kd of 2.1 +/- 0.2 nM (four experiments), and a high level of expression was attained, with a maximal number of saturable binding sites of 24.1 +/- 4.4 pmol/mg of protein (four experiments). The rates of association and dissociation for [3H]Win 55212-2 specific binding were both rapid when measured at 30 degrees. [3H]Win 55212-2 specific binding to the CB2 receptor was moderately enhanced by divalent and monovalent cations but was only slightly inhibited by guanosine-5'-O-(3-thio)-triphosphate. Competition for [3H]Win 55212-2 specific binding to the CB2 receptor was stereoselective, with the following rank order of potency for the more active stereoisomers: HU-210 > (-)-CP-55940 approximately Win 55212-2 >> (-)delta 9-THC > anandamide. The signaling pathway of the human CB2 receptor was investigated in a CB2-CHO-K1 stable cell line. CB2 receptor activation by cannabinoid agonists inhibited forskolin-induced cAMP production in a concentration-dependent and stereoselective manner but did not increase either cAMP production or Ca2+ mobilization in fura-2/acetoxymethyl ester-loaded CB2-CHO-K1 cells. The CB2 receptor-mediated inhibition of forskolin-induced cAMP production was abolished by pretreatment of the cells with 10 ng/ml pertussis toxin. These results demonstrate that the CB2 receptor is functionally coupled to inhibition of adenylyl cyclase activity via a pertussis toxin-sensitive G protein.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources