Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jul 14;270(28):16542-8.
doi: 10.1074/jbc.270.28.16542.

Chlorination of tyrosyl residues in peptides by myeloperoxidase and human neutrophils

Affiliations
Free article

Chlorination of tyrosyl residues in peptides by myeloperoxidase and human neutrophils

N M Domigan et al. J Biol Chem. .
Free article

Abstract

Hypochlorous acid is the major strong oxidant generated by human neutrophils, and it has the potential to cause much of the tissue damage that these inflammatory cells promote. It is produced from hydrogen peroxide and chloride by the heme enzyme myeloperoxidase. To unequivocally establish that hypochlorous acid contributes to inflammation, a stable and unique marker for its reaction with biomolecules needs to be identified. In this investigation we have found that reagent hypochlorous acid reacts with tyrosyl residues in small peptides and converts them to chlorotyrosine. Purified myeloperoxidase in combination with hydrogen peroxide and chloride, as well as stimulated human neutrophils, chlorinated tyrosine in the peptide Gly-Gly-Tyr-Arg. Rather than reacting directly with the aromatic ring of tyrosine, hypochlorous acid initially reacted with an amine group of the peptide to form a chloramine. The chloramine then underwent an intramolecular reaction with the tyrosyl residue to convert it to chlorotyrosine. This indicates that tyrosyl residues in proteins that are close to amine groups will be susceptible to chlorination. Peroxidases are the only enzymes capable of chlorinating an aromatic ring. Furthermore, myeloperoxidase is the only human enzyme that produces hypochlorous acid under physiological conditions. Therefore, chlorotyrosine will be a specific marker for the production of hypochlorous acid in vivo and for the involvement of myeloperoxidase in inflammatory tissue damage.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources