Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1993 Nov;16(11):480-7.
doi: 10.1016/0166-2236(93)90081-v.

Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation

Affiliations
Review

Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation

A Artola et al. Trends Neurosci. 1993 Nov.

Abstract

In many brain areas, including the cerebellar cortex, neocortex, hippocampus, striatum and nucleus accumbens, brief activation of an excitatory pathway can produce long-term depression (LTD) of synaptic transmission. In most preparations, induction of LTD has been shown to require a minimum level of postsynaptic depolarization and a rise in the intracellular Ca2+ concentration [Ca2+]i in the postsynaptic neurone. Thus, induction conditions resemble those described for the initiation of associative long-term potentiation (LTP). However, data from structures susceptible to both LTD and LTP suggest that a stronger depolarization and a greater increase in [Ca2+]i are required to induce LTP than to initiate LTD. The source of Ca2+ appears to be less critical for the differential induction of LTP and LTD than the amplitude of the Ca2+ surge, since the activation of voltage- and ligand-gated Ca2+ conductances as well as the release from intracellular stores have all been shown to contribute to both LTD and LTP induction. LTD is induceable even at inactive synapses if [Ca2+]i is raised to the appropriate level by antidromic or heterosynaptic activation, or by raising the extracellular Ca2+ concentration [Ca2+]o. These conditions suggest a rule (called here the ABS rule) for activity-dependent synaptic modifications that differs from the classical Hebb rule and that can account for both homosynaptic LTD and LTP as well as for heterosynaptic competition and associativity.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources