Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations
- PMID: 7498765
- PMCID: PMC1206689
- DOI: 10.1093/genetics/140.4.1223
Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations
Abstract
The carboxyl-terminal domain (CTD) of the RNA polymerase II largest subunit plays an essential but poorly understood role in transcription. The CTD is highly phosphorylated in vivo and this modification may be important in the transition from transcription initiation to elongation. We report here the development of a strategy for creating novel yeast CTDs. We have used this approach to show that the minimum viable CTD in yeast contains eight consensus (Tyr1Ser2Pro3Thr4Ser5Pro6Ser7) heptapeptide repeats. Substitution of alanine or glutamate for serines in positions two or five is lethal. In addition, changing tyrosine in position one to phenylalanine is lethal. The effects of mutations that alter potential phosphorylation sites are consistent with a requirement for CTD phosphorylation in vivo.
Similar articles
-
Suppression analysis reveals a functional difference between the serines in positions two and five in the consensus sequence of the C-terminal domain of yeast RNA polymerase II.Genetics. 1996 Jun;143(2):661-71. doi: 10.1093/genetics/143.2.661. Genetics. 1996. PMID: 8725217 Free PMC article.
-
The upstream activator CTF/NF1 and RNA polymerase II share a common element involved in transcriptional activation.Nucleic Acids Res. 1994 Jun 11;22(11):1966-73. doi: 10.1093/nar/22.11.1966. Nucleic Acids Res. 1994. PMID: 8029001 Free PMC article.
-
Trypanosoma brucei RNA polymerase II is phosphorylated in the absence of carboxyl-terminal domain heptapeptide repeats.J Biol Chem. 1994 Feb 18;269(7):4754-60. J Biol Chem. 1994. PMID: 8106443
-
A structural perspective of CTD function.Genes Dev. 2005 Jun 15;19(12):1401-15. doi: 10.1101/gad.1318105. Genes Dev. 2005. PMID: 15964991 Review.
-
Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD.Annu Rev Cell Dev Biol. 1997;13:1-23. doi: 10.1146/annurev.cellbio.13.1.1. Annu Rev Cell Dev Biol. 1997. PMID: 9442866 Review.
Cited by
-
Distinct requirement of RNA polymerase II CTD phosphorylations in budding and fission yeast.Transcription. 2012 Sep-Oct;3(5):231-4. doi: 10.4161/trns.21066. Epub 2012 Sep 1. Transcription. 2012. PMID: 22771993 Free PMC article.
-
Genetic interactions of Spt4-Spt5 and TFIIS with the RNA polymerase II CTD and CTD modifying enzymes in Saccharomyces cerevisiae.Genetics. 2001 Oct;159(2):487-97. doi: 10.1093/genetics/159.2.487. Genetics. 2001. PMID: 11606527 Free PMC article.
-
C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats.J Biol Chem. 2004 Jun 11;279(24):24957-64. doi: 10.1074/jbc.M402218200. Epub 2004 Mar 26. J Biol Chem. 2004. PMID: 15047695 Free PMC article.
-
Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain.Genes Dev. 2001 Dec 15;15(24):3319-29. doi: 10.1101/gad.935901. Genes Dev. 2001. PMID: 11751637 Free PMC article.
-
It's a DoG-eat-DoG world-altered transcriptional mechanisms drive downstream-of-gene (DoG) transcript production.Mol Cell. 2022 Jun 2;82(11):1981-1991. doi: 10.1016/j.molcel.2022.04.008. Epub 2022 Apr 28. Mol Cell. 2022. PMID: 35487209 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases