Muscle glucose metabolism following exercise in the rat: increased sensitivity to insulin
- PMID: 6804492
- PMCID: PMC370132
- DOI: 10.1172/jci110517
Muscle glucose metabolism following exercise in the rat: increased sensitivity to insulin
Abstract
Muscle glycogen stores are depleted during exercise and are rapidly repleted during the recovery period. To investigate the mechanism for this phenomenon, untrained male rats were run for 45 min on a motor-driven treadmill and the ability of their muscles to utilize glucose was then assessed during perfusion of their isolated hindquarters. Glucose utilization by the hindquarter was the same in exercised and control rats perfused in the absence of added insulin; however, when insulin (30-40,000 muU/ml) was added to the perfusate, glucose utilization was greater after exercise. Prior exercise lowered both, the concentration of insulin that half-maximally stimulated glucose utilization (exercise, 150 muU/ml; control, 480 muU/ml) and modestly increased its maximum effect. The increase in insulin sensitivity persisted for 4 h following exercise, but was not present after 24 h. The rate-limiting step in glucose utilization enhanced by prior exercise appeared to be glucose transport across the cell membrane, as in neither control nor exercised rats did free glucose accumulate in the muscle cell. Following exercise, the ability of insulin to stimulate the release of lactate into the perfusate was unaltered; however its ability to stimulate the incorporation of [(14)C]glucose into glycogen in certain muscles was enhanced. Thus at a concentration of 75 muU/ml insulin stimulated glycogen synthesis eightfold more in the fast-twitch red fibers of the red gastrocnemius than it did in the same muscle of nonexercised rats. In contrast, insulin only minimally increased glycogen synthesis in the fast-twitch white fibers of the gastrocnemius, which were not glycogen-depleted. The uptake of 2-deoxyglucose by these muscles followed a similar pattern suggesting that glucose transport was also differentially enhanced. Prior exercise did not enhance the ability of insulin to convert glycogen synthase from its glucose-6-phosphate-dependent (D) to its glucose-6-phosphate-independent (1) form. On the other hand, following exercise, insulin prevented a marked decrease in muscle glucose-6-phosphate, which could have diminished synthase activity in situ. The possibility that exercise enhanced the ability of insulin to convert glycogen synthase D to an intermediate form of the enzyme, more sensitive to glucose-6-phosphate, remains to be explored. These results suggest that following exercise, glucose transport and glycogen synthesis in skeletal muscle are enhanced due at least in part to an increase in insulin sensitivity. They also suggest that this increase in insulin sensitivity occurs predominantly in muscle fibers that are deglycogenated during exercise.
Similar articles
-
Glycogen depletion and increased insulin sensitivity and responsiveness in muscle after exercise.Am J Physiol. 1986 Dec;251(6 Pt 1):E664-9. doi: 10.1152/ajpendo.1986.251.6.E664. Am J Physiol. 1986. PMID: 3538900
-
Muscle alpha-aminoisobutyric acid transport after exercise: enhanced stimulation by insulin.Am J Physiol. 1985 May;248(5 Pt 1):E546-52. doi: 10.1152/ajpendo.1985.248.5.E546. Am J Physiol. 1985. PMID: 3887941
-
Enhanced muscle glucose metabolism after exercise: modulation by local factors.Am J Physiol. 1984 Jun;246(6 Pt 1):E476-82. doi: 10.1152/ajpendo.1984.246.6.E476. Am J Physiol. 1984. PMID: 6430094
-
Studies of gene expression and activity of hexokinase, phosphofructokinase and glycogen synthase in human skeletal muscle in states of altered insulin-stimulated glucose metabolism.Dan Med Bull. 1999 Feb;46(1):13-34. Dan Med Bull. 1999. PMID: 10081651 Review.
-
Regulation of glycogen resynthesis following exercise. Dietary considerations.Sports Med. 1991 Apr;11(4):232-43. doi: 10.2165/00007256-199111040-00003. Sports Med. 1991. PMID: 1901662 Review.
Cited by
-
Exercise-A Panacea of Metabolic Dysregulation in Cancer: Physiological and Molecular Insights.Int J Mol Sci. 2021 Mar 27;22(7):3469. doi: 10.3390/ijms22073469. Int J Mol Sci. 2021. PMID: 33801684 Free PMC article. Review.
-
Phycocyanin attenuates skeletal muscle damage and fatigue via modulation of Nrf2 and IRS-1/AKT/mTOR pathway in exercise-induced oxidative stress in rats.PLoS One. 2024 Sep 10;19(9):e0310138. doi: 10.1371/journal.pone.0310138. eCollection 2024. PLoS One. 2024. PMID: 39255269 Free PMC article.
-
Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease.Pflugers Arch. 2020 Sep;472(9):1273-1298. doi: 10.1007/s00424-020-02417-x. Epub 2020 Jun 26. Pflugers Arch. 2020. PMID: 32591906 Free PMC article. Review.
-
Effect of endurance and sprint exercise on the sensitivity of glucose metabolism to insulin in the epitrochlearis muscle of sedentary and trained rats.Eur J Appl Physiol Occup Physiol. 1991;62(2):145-50. doi: 10.1007/BF00626771. Eur J Appl Physiol Occup Physiol. 1991. PMID: 2022204
-
Beta-adrenergic blockade restores glucose's antiketogenic activity after exercise in carbohydrate-depleted athletes.J Physiol. 1987 May;386:439-54. doi: 10.1113/jphysiol.1987.sp016543. J Physiol. 1987. PMID: 3316599 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical