Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Nov;74(5):1842-9.
doi: 10.1172/JCI111603.

Degradation of sulfated proteoglycans in the subendothelial extracellular matrix by human platelet heparitinase

Degradation of sulfated proteoglycans in the subendothelial extracellular matrix by human platelet heparitinase

J Yahalom et al. J Clin Invest. 1984 Nov.

Abstract

Cultured vascular and corneal endothelial cells produce an underlying extracellular matrix (ECM) which induces platelet adherence, aggregation, and release reaction. Incubation of a metabolically (35S)O = 4-labeled ECM with platelet-rich plasma or washed platelets, but not with platelet-poor plasma, resulted in degradation of its heparan sulfate-containing proteoglycans into labeled fragments four to five times smaller than intact glycosaminoglycan side chains. These fragments were sensitive to deamination with nitrous acid and were not produced in the presence of heparin, indicating that heparan sulfate in the ECM is susceptible to cleavage by the platelet heparitinase. This degradation required adhesion of platelets to the ECM rather than aggregation since it was not inhibited by aspirin, which prevented platelet aggregation but not adherence. The enzyme was not released during aggregation of platelets on the ECM but was readily liberated upon their exposure to thrombin. This liberation was inhibited in the presence of prostacyclin (PGI2). Isolated high molecular weight proteoglycans first released from the ECM by incubation with platelet poor plasma served as a substrate for further degradation by the platelet heparitinase, suggesting a cascade mechanism for degradation of heparan sulfate in the ECM. Heparitinase, although to a lower level, was also active when washed platelets were added on top of a confluent endothelial cell monolayer covering the (35S)O = 4-labeled ECM. It is suggested that the platelet heparitinase may be involved in the impairment of the integrity of the vessel wall and thus facilitate the extravasation of blood-borne cells.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Chromatogr. 1971 Jul 8;59(1):87-97 - PubMed
    1. Br J Exp Pathol. 1972 Jun;53(3):301-13 - PubMed
    1. J Biol Chem. 1973 Oct 25;248(20):7234-41 - PubMed
    1. Int J Cancer. 1973 May;11(3):704-18 - PubMed
    1. FEBS Lett. 1976 Apr 15;64(1):218-21 - PubMed

Publication types