Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Mar;98(3):934-45.
doi: 10.1083/jcb.98.3.934.

Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae

Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae

A E Adams et al. J Cell Biol. 1984 Mar.

Abstract

The distribution of actin in wild-type cells and in morphogenetic mutants of the budding yeast Saccharomyces cerevisiae was explored by staining cells with fluorochrome-labeled phallotoxins after fixing and permeabilizing the cells by several methods. The actin appeared to be localized in a set of cortical spots or patches, as well as in a network of cytoplasmic fibers. Bundles of filaments that may possibly correspond to the fibers visualized by fluorescence were observed with the electron microscope. The putative actin spots were concentrated in small and medium-sized buds and at what were apparently the sites of incipient bud formation on unbudded cells, whereas the putative actin fibers were generally oriented along the long axes of the mother-bud pairs. In several morphogenetic mutants that form multiple, abnormally elongated buds, the actin patches were conspicuously clustered at the tips of most buds, and actin fibers were clearly oriented along the long axes of the buds. There was a strong correlation between the occurrence of active growth at particular bud tips and clustering of actin spots at those same tips. Near the end of the cell cycle in wild-type cells, actin appeared to concentrate (as a cluster of spots or a band) in the neck region connecting the mother cell to its bud. Observations made using indirect immunofluorescence with a monoclonal anti-yeast-tubulin antibody on the morphogenetic mutant cdc4 (which forms multiple, abnormally elongated buds while the nuclear cycle is arrested) revealed the surprising occurrence of multiple bundles of cytoplasmic microtubules emanating from the one duplicated spindle-pole body per cell. It seems that most or all of the buds contain one or more of these bundles of microtubules, which often can be seen to extend to the very tips of the buds. These observations are consistent with the hypotheses that actin, tubulin, or both may be involved in the polarization of growth and localization of cell-wall deposition that occurs during the yeast cell cycle.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Cell Biol. 1983 Feb;96(2):541-7 - PubMed
    1. J Cell Biol. 1981 Feb;88(2):364-72 - PubMed
    1. Cold Spring Harb Symp Quant Biol. 1974;38:123-31 - PubMed
    1. J Mol Biol. 1971 Jul 14;59(1):183-94 - PubMed
    1. J Cell Sci. 1981 Apr;48:89-103 - PubMed

Publication types