Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1983 Feb 15;210(2):297-305.
doi: 10.1042/bj2100297.

Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate

Low-molecular-weight constituents of isolated insulin-secretory granules. Bivalent cations, adenine nucleotides and inorganic phosphate

J C Hutton et al. Biochem J. .

Abstract

The concentrations of Zn2+, Ca2+, Mg2+, Pi and adenine nucleotides were determined in insulin-secretory granules prepared from a transplantable rat insulinoma. Differential and density-gradient centrifugation analyses revealed that Zn2+ in this tissue was principally localized in the secretory granule, a second major fraction being found in association with cytosolic proteins. Pi was principally recovered in the latter fraction, whereas Ca2+ and Mg2+ were more widely distributed. Intragranular ion-distribution experiments suggested that Zn2+ was complexed mainly to insulin and its precursor forms and remained in the granule in an insoluble state. The Zn2+/insulin ratio (0.54) was greater than that expected for insulin molecules having two centrally co-ordinated Zn2+ atoms/hexamer, but less than the maximal Zn2+-binding capacity of the molecule. Most of the granular Ca2+, Mg2+ and Pi was released in a soluble form when granules were disrupted by sonication. Simulation in vitro of the ionic composition of the granule suggested that up to 90% of its Ca2+ was complexed to Pi and adenine nucleotides. Granular macromolecules also bound Ca2+, as shown by equilibrium-dialysis studies of granule lysates. However, such binding was displaced by Mg2+. Examination of the efflux of Ca2+ from granules incubated in iso-osmotic suspensions at 37 degrees C suggested that the passive permeability of the granule membrane to Ca2+ was very low. Nevertheless, more than 50% of the granular Ca2+ was rapidly released in an ionized form on hypo-osmotic or detergent-induced disruption of the granule membrane. This may represent a potentially mobilizable pool of Ca2+ in vivo.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Cell Biol. 1967 Feb;32(2):415-38 - PubMed
    1. Clin Chim Acta. 1966 Sep;14(3):361-6 - PubMed
    1. Diabetes. 1968 Sep;17(9):537-46 - PubMed
    1. Acta Pathol Microbiol Scand. 1968;74(2):145-60 - PubMed
    1. Biochem Biophys Res Commun. 1970 Jan 23;38(2):284-9 - PubMed

Publication types