Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1984 Jun 10;259(11):7261-7.

Normalization of receptor binding of apolipoprotein E2. Evidence for modulation of the binding site conformation

  • PMID: 6327714
Free article

Normalization of receptor binding of apolipoprotein E2. Evidence for modulation of the binding site conformation

T L Innerarity et al. J Biol Chem. .
Free article

Abstract

Apolipoprotein (apo-) E3, when combined with the phospholipid dimyristoylphosphatidylcholine (DMPC), binds avidly to apo-B,E (low density lipoprotein) receptors on human fibroblasts. Apolipoprotein E2 isolated from type III hyperlipoproteinemic subjects, which differs from apo-E3 by the presence of cysteine instead of arginine at residue 158, possesses only about 1% of the receptor binding activity of apo-E3. Modification of apo-E2 with cysteamine, which converts the cysteine at position 158 to a positively charged lysine analogue, activates receptor binding approximately 13-fold. In the present experiments, thrombin was used to cleave apo-E2 into two fragments (Mr = 22,000 and Mr = 10,000). The larger fragment, which has been shown to possess the receptor binding domain, displayed binding activity up to 12-fold greater than intact apo-E2 or equivalent to apo-E2 treated with cysteamine. When the Mr = 22,000 fragment was modified with cysteamine and combined with DMPC, receptor binding was further enhanced, attaining the level of activity of normal apo-E3 X DMPC, a 100-fold increase over apo-E2 X DMPC binding. When the cysteamine modification was reversed by incubation with beta-mercaptoethanol, the Mr = 22,000 fragment retained most of its binding activity. However, when the same sample was tested 24 h later, the level of binding activity dropped significantly. The receptor binding of apo-E2-containing beta-very low density lipoproteins could also be activated by cysteamine treatment, with the same retention of enhanced binding activity occurring after the reversal of the modification. These results indicate that apo-E2 can attain full binding activity by the removal of the carboxyl-terminal one-third of the molecule and the addition of a positive charge at residue 158 of the molecule. The retention of enhanced binding after the reversal of the cysteamine modification indicates that the enhanced binding is probably due to conformational changes induced in the binding domain (and maintained by the phospholipid) and not merely to the presence of the positive charge at residue 158.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources