Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1980 May;30(2):139-49.
doi: 10.1016/0009-2797(80)90121-0.

Effects of sulfhydryl reagents on phagocytosis and exocytosis in rabbit polymorphonuclear leukocytes

Effects of sulfhydryl reagents on phagocytosis and exocytosis in rabbit polymorphonuclear leukocytes

J G Elferink et al. Chem Biol Interact. 1980 May.

Abstract

The effect of sulfhydryl reagents on phagocytosis and concomitant enzyme release and on ionophore A 23187 + Ca2+-induced exocytosis in rabbit polymorphonuclear leukocytes (PMN's) was studied. Membrane-penetrating sulfhydryl reagents such as cytochalasin A and N-naphthylmaleimide in micromolar concentrations inhibit both phagocytosis and exocytosis. Poorly penetrating reagents such as p-chloromercuribenzene sulfonate (pCMBS) and 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), inhibit only in high concentrations (pCMBS), or they are ineffective as inhibitors (DTNB). Inhibition by pCMBS is not reversed by glutathione or dithiothreitol; this suggests that some pCMBS probably enters the cell. Specific intracellular sulfhydryl compounds appear to be essential in the cellular apparatus involved in phagocytosis and exocytosis; various possibilities are considered. A concentration of N-naphthylmaleimide which completely inhibits phagocytosis and exocytosis leaves cellular ATPase activity intact.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources