Three-dimensional structural model of eubacterial 5S RNA that has functional implications
- PMID: 6181508
- PMCID: PMC346722
- DOI: 10.1073/pnas.79.15.4599
Three-dimensional structural model of eubacterial 5S RNA that has functional implications
Abstract
Escherichia coli 5S RNA and its specific protein complexes were hydrolyzed with the single-strand-specific nuclease S1. Based on the results, a tertiary structural model for E. coli 5S RNA is proposed in which ribosomal proteins E-L5, E-L18, and E-L25 influence the conformation of the RNA. This may be of significance for ribosomal function. Comparison of the proposed E. coli 5S RNA structure with those of 18 other prokaryotic 5S RNAs led to a generalized eubacterial 5S RNA tertiary structure in which the majority of the conserved nucleotides are in non-base-paired regions and several conserved "looped-out" adenines (in E. coli, adenines -52, -53, -57, -58, and -66) are implied to be important for protein recognition or interaction or both.
Similar articles
-
Structural analyses of E. coli 5S RNA fragments, their associates and complexes with proteins L18 and L25.Nucleic Acids Res. 1982 Feb 11;10(3):947-65. doi: 10.1093/nar/10.3.947. Nucleic Acids Res. 1982. PMID: 6278442 Free PMC article.
-
Chemical reactivity of E. coli 5S RNA in situ in the 50S ribosomal subunit.Nucleic Acids Res. 1983 Feb 11;11(3):605-17. doi: 10.1093/nar/11.3.605. Nucleic Acids Res. 1983. PMID: 6340064 Free PMC article.
-
Nuclease S1 analysis of eubacterial 5S rRNA secondary structure.J Mol Evol. 1985;22(3):237-42. doi: 10.1007/BF02099753. J Mol Evol. 1985. PMID: 3001324
-
Improved procedure for the isolation of a double-strand-specific ribonuclease and its application to structural analysis of various 5S rRNAs and tRNAs.Eur J Biochem. 1986 Jan 2;154(1):31-9. doi: 10.1111/j.1432-1033.1986.tb09355.x. Eur J Biochem. 1986. PMID: 2417836
-
Intermolecular base-paired interaction between complementary sequences present near the 3' ends of 5S rRNA and 18S (16S) rRNA might be involved in the reversible association of ribosomal subunits.Nucleic Acids Res. 1979 Dec 11;7(7):1913-29. doi: 10.1093/nar/7.7.1913. Nucleic Acids Res. 1979. PMID: 94160 Free PMC article. Review.
Cited by
-
A comparison of the solution structures and conformational properties of the somatic and oocyte 5S rRNAs of Xenopus laevis.Nucleic Acids Res. 1988 Mar 25;16(5):2295-312. doi: 10.1093/nar/16.5.2295. Nucleic Acids Res. 1988. PMID: 3357778 Free PMC article.
-
Sequences of the 5S rRNAs of Azotobacter vinelandii, Pseudomonas aeruginosa and Pseudomonas fluorescens with some notes on 5S RNA secondary structure.Nucleic Acids Res. 1983 Mar 11;11(5):1245-52. doi: 10.1093/nar/11.5.1245. Nucleic Acids Res. 1983. PMID: 6402760 Free PMC article.
-
Point mutational analysis of the Xenopus laevis 5S gene promoter.EMBO J. 1985 Jul;4(7):1847-53. doi: 10.1002/j.1460-2075.1985.tb03859.x. EMBO J. 1985. PMID: 2992947 Free PMC article.
-
Analysis of a sequence region of 5S RNA from E. coli cross-linked in situ to the ribosomal protein L25.Nucleic Acids Res. 1985 Jun 11;13(11):3953-68. doi: 10.1093/nar/13.11.3953. Nucleic Acids Res. 1985. PMID: 3892485 Free PMC article.
-
Does 5S RNA from E. coli have a pseudoknotted structure?Nucleic Acids Res. 1986 Sep 25;14(18):7473-85. doi: 10.1093/nar/14.18.7473. Nucleic Acids Res. 1986. PMID: 2429262 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases