Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1986 May;6(5):1284-301.
doi: 10.1523/JNEUROSCI.06-05-01284.1986.

Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex

Comparative Study

Orientation selectivity of synaptic potentials in neurons of cat primary visual cortex

D Ferster. J Neurosci. 1986 May.

Abstract

Neurons of the visual cortex of the cat were penetrated with intracellular electrodes and postsynaptic potentials evoked by visual stimuli recorded. By alternately polarizing the cell with steady current injected through the recording electrode, IPSPs and EPSPs could be recorded and analyzed independently. Hyperpolarizing current suppressed IPSPs and enhanced EPSPs by moving the membrane potential toward the IPSP equilibrium potential. Depolarizing the cell toward the EPSP equilibrium potential enhanced IPSP. The responses to electrical stimulation of the LGN, where EPSPs and IPSPs could be distinguished easily by virtue of their characteristic latencies and shapes, were used to set the current injection to the appropriate level to view the two types of synaptic potential. EPSPs were found to be well oriented in that maximal depolarizing responses could be evoked at only one stimulus orientation; rotating the stimulus orientation in either direction produced a fall in the EPSP response. IPSPs were also well tuned to orientation, and invariably the preferred orientations of EPSPs and IPSPs in any one cell were identical. In addition, no systematic difference in the width of tuning of the two types of potential was seen. This result has been obtained from penetrations of over 30 cortical cells, including those with simple and complex receptive fields. It is concluded that orientation of cortical receptive fields is neither created nor sharpened by inhibition between neurons with different orientation preference. The function of inhibition evoked simultaneously with excitation by optimally oriented stimuli has yet to be determined, though it is likely to be the mechanism underlying other cortical receptive field properties, such as direction selectivity and end-stopping.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources