Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2022 Dec:222:104790.
doi: 10.1016/j.biosystems.2022.104790. Epub 2022 Oct 11.

Adversarial deep evolutionary learning for drug design

Affiliations

Adversarial deep evolutionary learning for drug design

Sheriff Abouchekeir et al. Biosystems. 2022 Dec.

Abstract

The design of a new therapeutic agent is a time-consuming and expensive process. The rise of machine intelligence provides a grand opportunity of expeditiously discovering novel drug candidates through smart search in the vast molecular structural space. In this paper, we propose a new approach called adversarial deep evolutionary learning (ADEL) to search for novel molecules in the latent space of an adversarial generative model and keep improving the latent representation space. In ADEL, a custom-made adversarial autoencoder (AAE) model is developed and trained under a deep evolutionary learning (DEL) process. This involves an initial training of the AAE model, followed by an integration of multi-objective evolutionary optimization in the continuous latent representation space of the AAE rather than the discrete structural space of molecules. By using the AAE, an arbitrary distribution can be provided to the training of AAE such that the latent representation space is set to that distribution. This allows for a starting latent space from which new samples can be produced. Throughout the process of learning, new samples of high quality are generated after each iteration of training and then added back into the full dataset, therefore, allowing for a more comprehensive procedure of understanding the data structure. This combination of evolving data and continuous learning not only enables improvement in the generative model, but the data as well. By comparing ADEL to the previous work in DEL, we see that ADEL can obtain better property distributions. We show that ADEL is able to design high-quality molecular structures which can be further used for virtual and experimental screenings.

Keywords: Adversarial autoencoder; Adversarial deep evolutionary learning; Deep evolutionary learning; Drug design; Multi-objective optimization; Virtual screening.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

LinkOut - more resources