Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Apr 15;262(11):5118-24.

Mechanism for markedly hyperresponsive insulin-stimulated glucose transport activity in adipose cells from insulin-treated streptozotocin diabetic rats. Evidence for increased glucose transporter intrinsic activity

  • PMID: 3549715
Free article

Mechanism for markedly hyperresponsive insulin-stimulated glucose transport activity in adipose cells from insulin-treated streptozotocin diabetic rats. Evidence for increased glucose transporter intrinsic activity

B B Kahn et al. J Biol Chem. .
Free article

Abstract

The effects of insulin therapy in streptozotocin diabetic rats on the glucose transport response to insulin in adipose cells have been examined. At sequential intervals during subcutaneous insulin infusion, isolated cells were prepared and incubated with or without insulin, and 3-O-methylglucose transport was measured. Insulin treatment not only reversed the insulin-resistant glucose transport associated with diabetes, but resulted in a progressive hyperresponsiveness, peaking with a 3-fold overshoot at 7-8 days (12.1 +/- 0.3 versus 3.4 +/- 0.1 fmol/cell/min, mean +/- S.E.) and remaining elevated for more than 3 weeks. During the peak overshoot, glucose transporters in subcellular membrane fractions were assessed by cytochalasin B binding. Insulin therapy restored glucose transporter concentration in the plasma membranes of insulin-stimulated cells from a 40% depleted level previously reported in the diabetic state to approximately 35% greater than control (38 +/- 4 versus 28 +/- 2 pmol/mg of membrane protein). Glucose transporter concentration in the low-density microsomes from basal cells was also restored from an approximately 45% depleted level back to normal (50 +/- 4 versus 50 +/- 6 pmol/mg of membrane protein), whereas total intracellular glucose transporters were further increased due to an approximately 2-fold increase in low-density microsomal membrane protein. However, these increases remained markedly less than the enhancement of insulin-stimulated glucose transport activity in the intact cell. Thus, insulin treatment of diabetic rats produces a marked and sustained hyperresponsive insulin-stimulated glucose transport activity in the adipose cell with little more than a restoration to the non-diabetic control level of glucose transporter translocation. Because this enhanced glucose transport activity occurs through an increase in Vmax, insulin therapy appears to be associated with a marked increase in glucose transporter intrinsic activity.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources