Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial

REGEN-COV Antibody Combination and Outcomes in Outpatients with Covid-19

David M Weinreich et al. N Engl J Med. .

Abstract

Background: In the phase 1-2 portion of an adaptive trial, REGEN-COV, a combination of the monoclonal antibodies casirivimab and imdevimab, reduced the viral load and number of medical visits in patients with coronavirus disease 2019 (Covid-19). REGEN-COV has activity in vitro against current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern.

Methods: In the phase 3 portion of an adaptive trial, we randomly assigned outpatients with Covid-19 and risk factors for severe disease to receive various doses of intravenous REGEN-COV or placebo. Patients were followed through day 29. A prespecified hierarchical analysis was used to assess the end points of hospitalization or death and the time to resolution of symptoms. Safety was also evaluated.

Results: Covid-19-related hospitalization or death from any cause occurred in 18 of 1355 patients in the REGEN-COV 2400-mg group (1.3%) and in 62 of 1341 patients in the placebo group who underwent randomization concurrently (4.6%) (relative risk reduction [1 minus the relative risk], 71.3%; P<0.001); these outcomes occurred in 7 of 736 patients in the REGEN-COV 1200-mg group (1.0%) and in 24 of 748 patients in the placebo group who underwent randomization concurrently (3.2%) (relative risk reduction, 70.4%; P = 0.002). The median time to resolution of symptoms was 4 days shorter with each REGEN-COV dose than with placebo (10 days vs. 14 days; P<0.001 for both comparisons). REGEN-COV was efficacious across various subgroups, including patients who were SARS-CoV-2 serum antibody-positive at baseline. Both REGEN-COV doses reduced viral load faster than placebo; the least-squares mean difference in viral load from baseline through day 7 was -0.71 log10 copies per milliliter (95% confidence interval [CI], -0.90 to -0.53) in the 1200-mg group and -0.86 log10 copies per milliliter (95% CI, -1.00 to -0.72) in the 2400-mg group. Serious adverse events occurred more frequently in the placebo group (4.0%) than in the 1200-mg group (1.1%) and the 2400-mg group (1.3%); infusion-related reactions of grade 2 or higher occurred in less than 0.3% of the patients in all groups.

Conclusions: REGEN-COV reduced the risk of Covid-19-related hospitalization or death from any cause, and it resolved symptoms and reduced the SARS-CoV-2 viral load more rapidly than placebo. (Funded by Regeneron Pharmaceuticals and others; ClinicalTrials.gov number, NCT04425629.).

PubMed Disclaimer

Figures

Figure 1
Figure 1. Screening, Randomization, Treatment, and Analysis.
In the original phase 3 portion of the trial, Regeneron requested that 2, 1, and 5 patients in the placebo, REGEN-COV 2400-mg, and REGEN-COV 8000-mg groups, respectively, withdraw from the trial because these patients underwent randomization in error. In the amended phase 3 portion of the trial, Regeneron requested that 2, 4, and 2 patients in the placebo, REGEN-COV 1200-mg, and REGEN-COV 2400-mg groups, respectively, withdraw from the trial because these patients underwent randomization in error. The modified full analysis set included all patients who were confirmed by means of quantitative reverse-transcriptase–polymerase-chain-reaction testing at a central laboratory to be positive for severe acute respiratory syndrome coronavirus 2 at baseline and who had at least one risk factor for severe coronavirus disease 2019 (Covid-19).
Figure 2
Figure 2. Clinical Efficacy.
Panel A shows the percentage of patients who were hospitalized or died from any cause in the amended phase 3 portion of the trial. Panel B shows the percentage of patients who were hospitalized or died from any cause in the original and amended phase 3 portions of the trial combined. Panel C shows the time to resolution of symptoms in the amended phase 3 portion of the trial. The lower and upper confidence limits are shown.

Similar articles

  • Effect of timing of casirivimab and imdevimab administration relative to mRNA-1273 COVID-19 vaccination on vaccine-induced SARS-CoV-2 neutralising antibody responses: a prospective, open-label, phase 2, randomised controlled trial.
    Isa F, Gonzalez Ortiz AM, Meyer J, Hamilton JD, Olenchock BA, Brackin T, Ganguly S, Forleo-Neto E, Faria L, Heirman I, Marovich M, Hutter J, Polakowski L, Irvin SC, Thakur M, Hooper AT, Baum A, Petro CD, Fakih FA, McElrath MJ, De Rosa SC, Cohen KW, Williams LD, Hellman CA, Odeh AJ, Patel AH, Tomaras GD, Geba GP, Kyratsous CA, Musser B, Yancopoulos GD, Herman GA; Trial Working Group. Isa F, et al. Lancet Infect Dis. 2025 Jan;25(1):52-67. doi: 10.1016/S1473-3099(24)00421-3. Epub 2024 Sep 2. Lancet Infect Dis. 2025. PMID: 39236733 Clinical Trial.
  • A Neutralizing Monoclonal Antibody for Hospitalized Patients with Covid-19.
    ACTIV-3/TICO LY-CoV555 Study Group; Lundgren JD, Grund B, Barkauskas CE, Holland TL, Gottlieb RL, Sandkovsky U, Brown SM, Knowlton KU, Self WH, Files DC, Jain MK, Benfield T, Bowdish ME, Leshnower BG, Baker JV, Jensen JU, Gardner EM, Ginde AA, Harris ES, Johansen IS, Markowitz N, Matthay MA, Østergaard L, Chang CC, Davey VJ, Goodman A, Higgs ES, Murray DD, Murray TA, Paredes R, Parmar MKB, Phillips AN, Reilly C, Sharma S, Dewar RL, Teitelbaum M, Wentworth D, Cao H, Klekotka P, Babiker AG, Gelijns AC, Kan VL, Polizzotto MN, Thompson BT, Lane HC, Neaton JD. ACTIV-3/TICO LY-CoV555 Study Group, et al. N Engl J Med. 2021 Mar 11;384(10):905-914. doi: 10.1056/NEJMoa2033130. Epub 2020 Dec 22. N Engl J Med. 2021. PMID: 33356051 Free PMC article. Clinical Trial.
  • Antiviral efficacy of molnupiravir versus ritonavir-boosted nirmatrelvir in patients with early symptomatic COVID-19 (PLATCOV): an open-label, phase 2, randomised, controlled, adaptive trial.
    Schilling WHK, Jittamala P, Watson JA, Boyd S, Luvira V, Siripoon T, Ngamprasertchai T, Batty EM, Cruz C, Callery JJ, Singh S, Saroj M, Kruabkontho V, Ngernseng T, Tanglakmankhong N, Tubprasert J, Abdad MY, Madmanee W, Kouhathong J, Suwannasin K, Pagornrat W, Piaraksa N, Hanboonkunupakarn P, Hanboonkunupakarn B, Poovorawan K, Potaporn M, Srisubat A, Loharjun B, Taylor WRJ, Chotivanich V, Chotivanich K, Imwong M, Pukrittayakamee S, Dondorp AM, Day NPJ, Teixeira MM, Piyaphanee W, Phumratanaprapin W, White NJ; PLATCOV Collaborative Group. Schilling WHK, et al. Lancet Infect Dis. 2024 Jan;24(1):36-45. doi: 10.1016/S1473-3099(23)00493-0. Epub 2023 Sep 28. Lancet Infect Dis. 2024. PMID: 37778363 Free PMC article. Clinical Trial.
  • Nirmatrelvir combined with ritonavir for preventing and treating COVID-19.
    Reis S, Metzendorf MI, Kuehn R, Popp M, Gagyor I, Kranke P, Meybohm P, Skoetz N, Weibel S. Reis S, et al. Cochrane Database Syst Rev. 2023 Nov 30;11(11):CD015395. doi: 10.1002/14651858.CD015395.pub3. Cochrane Database Syst Rev. 2023. PMID: 38032024 Free PMC article. Review.
  • Antibody tests for identification of current and past infection with SARS-CoV-2.
    Fox T, Geppert J, Dinnes J, Scandrett K, Bigio J, Sulis G, Hettiarachchi D, Mathangasinghe Y, Weeratunga P, Wickramasinghe D, Bergman H, Buckley BS, Probyn K, Sguassero Y, Davenport C, Cunningham J, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Struyf T, Van den Bruel A, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Deeks JJ; Cochrane COVID-19 Diagnostic Test Accuracy Group. Fox T, et al. Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD013652. doi: 10.1002/14651858.CD013652.pub2. Cochrane Database Syst Rev. 2022. PMID: 36394900 Free PMC article. Review.

Cited by

References

    1. WHO coronavirus (COVID-19) dashboard. Geneva: World Health Organization, 2021. (https://covid19.who.int/table).
    1. People with certain medical conditions. Atlanta: Centers for Disease Control and Prevention, 2021. (https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-...).
    1. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020;323:1775-1776. - PubMed
    1. Stokes EK, Zambrano LD, Anderson KN, et al. Coronavirus disease 2019 case surveillance — United States, January 22–May 30, 2020. MMWR Morb Mortal Wkly Rep 2020;69:759-765. - PMC - PubMed
    1. Williamson EJ, Walker AJ, Bhaskaran K, et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature 2020;584:430-436. - PMC - PubMed

Publication types

MeSH terms

Substances

Associated data