Optimization of Gaussian surface calculations and extension to solvent-accessible surface areas
- PMID: 34376031
- DOI: 10.1002/(SICI)1096-987X(199905)20:7<688::AID-JCC4>3.0.CO;2-F
Optimization of Gaussian surface calculations and extension to solvent-accessible surface areas
Abstract
We explored the use of several breadth-first and depth-first algorithms for the computation of Gaussian atomic and molecular surface areas. Our results for whole-molecule van der Waals surface areas (vdWSAs) were 10 times more accurate in relative error, relative to actual hard-sphere areas, than those reported by earlier workers. We were also able to extend the method to the computation of solvent-accessible surface areas (SASAs). This was made possible by an appropriate combination of algorithms, parameters, and preprocessing steps. For united-atom 3app, a 2366-atom protein, we obtained an average absolute atomic error of 1.16 Å2 with respect to the hard-sphere atomic SASA results in 7 s of CPU time on an R10000/194 MHz processor. Speed and accuracy were both optimized for SASA by the use of neighbor-list reduction (NLR), buried-atom elimination (BAE), and a depth-first search of the tree of atomic intersections. Accuracy was further optimized by the application of atom type specific parameters to the raw Gaussian results. ©1999 John Wiley & Sons, Inc. J Comput Chem 20: 688-703, 1999.
Keywords: Gaussian shape; breadth-first algorithm; buried atom elimination (BAE); depth-first algorithm; neighbor-list reduction (NLR); solvent-accessible surface area (SASA); van der Waals surface areas (vdWSA).
Similar articles
-
A review of methods available to estimate solvent-accessible surface areas of soluble proteins in the folded and unfolded states.Curr Protein Pept Sci. 2014;15(5):456-76. doi: 10.2174/1389203715666140327114232. Curr Protein Pept Sci. 2014. PMID: 24678666 Review.
-
A fast pairwise evaluation of molecular surface area.J Comput Chem. 2002 May;23(7):737-45. doi: 10.1002/jcc.10035. J Comput Chem. 2002. PMID: 11948592
-
What role do surfaces play in GB models? A new-generation of surface-generalized born model based on a novel gaussian surface for biomolecules.J Comput Chem. 2006 Jan 15;27(1):72-89. doi: 10.1002/jcc.20307. J Comput Chem. 2006. PMID: 16261581 Free PMC article.
-
Calculation of accurate interatomic contact surface areas for the quantitative analysis of non-bonded molecular interactions.Bioinformatics. 2019 Sep 15;35(18):3499-3501. doi: 10.1093/bioinformatics/btz062. Bioinformatics. 2019. PMID: 30698657 Free PMC article.
-
e-molecular shapes and properties.SAR QSAR Environ Res. 2003 Oct-Dec;14(5-6):329-37. doi: 10.1080/10629360310001623926. SAR QSAR Environ Res. 2003. PMID: 14758977 Review.
Cited by
-
Discovery of a novel phosphoinositide 3-kinase gamma (PI3Kγ) inhibitor against hematologic malignancies and theoretical studies on its PI3Kγ-specific binding mechanisms.RSC Adv. 2019 Jun 28;9(35):20207-20215. doi: 10.1039/c9ra02649e. eCollection 2019 Jun 25. RSC Adv. 2019. PMID: 35546906 Free PMC article.
-
Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking.J Comput Chem. 2011 Apr 15;32(5):866-77. doi: 10.1002/jcc.21666. Epub 2010 Oct 14. J Comput Chem. 2011. PMID: 20949517 Free PMC article.
-
Development and Evaluation of Peptidomimetic Compounds against SARS-CoV-2 Spike Protein: An in silico and in vitro Study.Mol Inform. 2022 Jul;41(7):e2100231. doi: 10.1002/minf.202100231. Epub 2022 Feb 1. Mol Inform. 2022. PMID: 35068079 Free PMC article.
-
Macrocyclized Extended Peptides: Inhibiting the Substrate-Recognition Domain of Tankyrase.J Am Chem Soc. 2017 Feb 15;139(6):2245-2256. doi: 10.1021/jacs.6b10234. Epub 2017 Feb 7. J Am Chem Soc. 2017. PMID: 28084734 Free PMC article.
-
Characterization of a clinical polymer-drug conjugate using multiscale modeling.Biopolymers. 2010 Nov;93(11):936-51. doi: 10.1002/bip.21474. Biopolymers. 2010. PMID: 20564048 Free PMC article.
References
-
- Lee, B.; Richards, F. M. J Mol Biol 1971, 55, 379-400.
-
- Hermann, R. B. J Phys Chem 1972, 76, 2754-2759.
-
- Wodak, S. J.; Janin, J. Proc Natl Acad Sci USA 1980, 77, 1736-1740.
-
- Richmond, T. J. J Mol Biol 1984, 178, 63-89.
-
- Hasel, W.; Hendrickson, T. F.; Still, W. C. Tetrahedron Comput Methodol 1988, 1, 103-116.
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources