Early warning of COVID-19 via wastewater-based epidemiology: potential and bottlenecks
- PMID: 33548842
- PMCID: PMC7825884
- DOI: 10.1016/j.scitotenv.2021.145124
Early warning of COVID-19 via wastewater-based epidemiology: potential and bottlenecks
Abstract
An effective early warning tool is of great administrative and social significance to the containment and control of an epidemic. Facing the unprecedented global public health crisis caused by COVID-19, wastewater-based epidemiology (WBE) has been given high expectations as a promising surveillance complement to clinical testing which had been plagued by limited capacity and turnaround time. In particular, recent studies have highlighted the role WBE may play in being a part of the early warning system. In this study, we briefly discussed the basics of the concept, the benefits and critical points of such an application, the challenges faced by the scientific community, the progress made so far, and what awaits to be addressed by future studies to make the concept work. We identified that the shedding dynamics of infected individuals, especially in the form of a mathematical shedding model, and the back-calculation of the number of active shedders from observed viral load are the major bottlenecks of WBE application in the COVID-19 pandemic that deserve more attention, and the sampling strategy (location, timing, and interval) needs to be optimized to fit the purpose and scope of the WBE project.
Keywords: COVID-19 surveillance; Epidemic early warning; Fecal shedding; Virus genome recovery; Wastewater-based epidemiology.
Copyright © 2021 The Author(s). Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Similar articles
-
Making waves: Plausible lead time for wastewater based epidemiology as an early warning system for COVID-19.Water Res. 2021 Sep 1;202:117438. doi: 10.1016/j.watres.2021.117438. Epub 2021 Jul 12. Water Res. 2021. PMID: 34333296 Free PMC article. Review.
-
Relating SARS-CoV-2 shedding rate in wastewater to daily positive tests data: A consistent model based approach.Sci Total Environ. 2022 Feb 10;807(Pt 2):150838. doi: 10.1016/j.scitotenv.2021.150838. Epub 2021 Oct 8. Sci Total Environ. 2022. PMID: 34627900 Free PMC article.
-
[Research progress on the wastewater-based epidemiology (WBE) in SARS-CoV-2 surveillance and early warning system from a community health perspective].Zhonghua Yu Fang Yi Xue Za Zhi. 2021 Aug 6;55(8):1016-1021. doi: 10.3760/cma.j.cn112150-20210308-00231. Zhonghua Yu Fang Yi Xue Za Zhi. 2021. PMID: 34445843 Review. Chinese.
-
Wastewater-based epidemiology (WBE) for SARS-CoV-2 - A review focussing on the significance of the sewer network using a Dublin city catchment case study.Water Sci Technol. 2022 Sep;86(6):1402-1425. doi: 10.2166/wst.2022.278. Water Sci Technol. 2022. PMID: 36178814 Review.
-
Wastewater-Based Epidemiology (WBE) and Viral Detection in Polluted Surface Water: A Valuable Tool for COVID-19 Surveillance-A Brief Review.Int J Environ Res Public Health. 2020 Dec 10;17(24):9251. doi: 10.3390/ijerph17249251. Int J Environ Res Public Health. 2020. PMID: 33321987 Free PMC article. Review.
Cited by
-
Early identification of a COVID-19 outbreak detected by wastewater surveillance at a large homeless shelter in Toronto, Ontario.Can J Public Health. 2023 Feb;114(1):72-79. doi: 10.17269/s41997-022-00696-8. Epub 2022 Sep 26. Can J Public Health. 2023. PMID: 36156197 Free PMC article.
-
A wastewater-based epidemic model for SARS-CoV-2 with application to three Canadian cities.Epidemics. 2022 Jun;39:100560. doi: 10.1016/j.epidem.2022.100560. Epub 2022 Apr 8. Epidemics. 2022. PMID: 35462206 Free PMC article.
-
Scaling SARS-CoV-2 wastewater concentrations to population estimates of infection.Sci Rep. 2022 Mar 3;12(1):3487. doi: 10.1038/s41598-022-07523-7. Sci Rep. 2022. PMID: 35241744 Free PMC article.
-
Safety by design: Biosafety and biosecurity in the age of synthetic genomics.iScience. 2023 Feb 10;26(3):106165. doi: 10.1016/j.isci.2023.106165. eCollection 2023 Mar 17. iScience. 2023. PMID: 36895643 Free PMC article. Review.
-
Wastewater to clinical case (WC) ratio of COVID-19 identifies insufficient clinical testing, onset of new variants of concern and population immunity in urban communities.Sci Total Environ. 2022 Dec 20;853:158547. doi: 10.1016/j.scitotenv.2022.158547. Epub 2022 Sep 5. Sci Total Environ. 2022. PMID: 36067855 Free PMC article.
References
-
- Ahmed W., Angel N., Edson J., Bibby K., Bivins A., O’Brien J.W., Choi P.M., Kitajima M., Simpson S.L., Li J., Tscharke B., Verhagen R., Smith W.J.M., Zaugg J., Dierens L., Hugenholtz P., Thomas K.V., Mueller J.F. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: a proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020;728:138764. doi: 10.1016/j.scitotenv.2020.138764. - DOI - PMC - PubMed
-
- Ahmed W., Bertsch P.M., Angel N., Bibby K., Bivins A., Dierens L., Edson J., Ehret J., Gyawali P., Hamilton K.A., Hosegood I., Hugenholtz P., Jiang G., Kitajima M., Sichani H.T., Shi J., Shimko K.M., Simpson S.L., Smith W.J.M., Symonds E.M., Thomas K.V., Verhagen R., Zaugg J., Mueller J.F. Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: a surveillance tool for assessing the presence of COVID-19 infected travellers. J. Travel Med. 2020;27:1–11. doi: 10.1093/jtm/taaa116. - DOI - PMC - PubMed
-
- Ahmed W., Bertsch P.M., Bibby K., Haramoto E., Hewitt J., Huygens F., Gyawali P., Korajkic A., Riddell S., Sherchan S.P., Simpson S.L., Sirikanchana K., Symonds E.M., Verhagen R., Vasan S.S., Kitajima M., Bivins A. Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. Environ. Res. 2020;191:110092. doi: 10.1016/j.envres.2020.110092. - DOI - PMC - PubMed
-
- Ahmed W., Bertsch P.M., Bivins A., Bibby K., Farkas K., Gathercole A., Haramoto E., Gyawali P., Korajkic A., McMinn B.R., Mueller J.F., Simpson S.L., Smith W.J.M., Symonds E.M., Thomas K.V., Verhagen R., Kitajima M. Comparison of virus concentration methods for the RT-qPCR-based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater. Sci. Total Environ. 2020;739:139960. doi: 10.1016/j.scitotenv.2020.139960. - DOI - PMC - PubMed
-
- Arons M.M., Hatfield K.M., Reddy S.C., Kimball A., James A., Jacobs J.R., Taylor J., Spicer K., Bardossy A.C., Oakley L.P., Tanwar S., Dyal J.W., Harney J., Chisty Z., Bell M., Methner M., Paul P., Carlson C.M., McLaughlin H.P., Thornburg N., Tong S., Tamin A., Tao Y., Uehara A., Harcourt J., Clark S., Brostrom-Smith C., Page L.C., Kay M., Lewis J., Montgomery P., Stone N.D., Clark T.A., Honein M.A., Duchin J.S., Jernigan J.A. Presymptomatic SARS-CoV-2 infections and transmission in a skilled nursing facility. N. Engl. J. Med. 2020;382:2081–2090. doi: 10.1056/NEJMoa2008457. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical