The role of heteroduplex correction in gene conversion in Saccharomyces cerevisiae
- PMID: 3299108
- DOI: 10.1038/328362a0
The role of heteroduplex correction in gene conversion in Saccharomyces cerevisiae
Abstract
Two different models have been proposed to explain the relative frequencies of the non-mendelian allelic segregations which are detected by tetrad analysis after meiosis in fungi. The first model maintains that 6:2 type tetrads result from correction of heteroduplexes containing mismatched sites and 5:3 type tetrads result from failure to correct mismatched sites. The second model suggests that 6:2 segregations result from the filling-in of double-strand gaps using information obtained from both strands of a homologous duplex. In this model 5:3 type tetrads result if the allele is included in the heteroduplex regions flanking the gap and the resulting mismatched nucleotides are not corrected. We have studied the correction of heteroduplex plasmid DNA in pms1 mutant strains of Saccharomyces cerevisiae, which are known to exhibit higher frequencies of 5:3 type tetrads and lower frequencies of 6:2 tetrads than wild-type strains. Our results suggest that the pms1 mutation causes a defect in mismatch correction, supporting the hypothesis that meiotic gene conversion in wild-type yeast cells often results from the correction of heteroduplex DNA.
Similar articles
-
[Participation of the HIM1 gene from Saccharomyces cerevisiae in correction of heteroduplex DNA. Molecular cloning of the gene].Genetika. 1992 May;28(5):56-65. Genetika. 1992. PMID: 1639262 Russian.
-
Palindromic sequences in heteroduplex DNA inhibit mismatch repair in yeast.Nature. 1989 Jul 27;340(6231):318-20. doi: 10.1038/340318a0. Nature. 1989. PMID: 2546083
-
The large loop repair and mismatch repair pathways of Saccharomyces cerevisiae act on distinct substrates during meiosis.Genetics. 2005 Jul;170(3):1033-43. doi: 10.1534/genetics.104.033670. Epub 2005 May 6. Genetics. 2005. PMID: 15879514 Free PMC article.
-
The history of the DNA heteroduplex.Bioessays. 1990 Mar;12(3):133-42. doi: 10.1002/bies.950120309. Bioessays. 1990. PMID: 2182009 Review. No abstract available.
-
Recombinators, recombinases and recombination genes of yeasts.Curr Genet. 1994 Jan;25(1):1-11. doi: 10.1007/BF00712959. Curr Genet. 1994. PMID: 8082158 Review. No abstract available.
Cited by
-
A DNA double chain break stimulates triparental recombination in Saccharomyces cerevisiae.Proc Natl Acad Sci U S A. 1989 Aug;86(16):6225-9. doi: 10.1073/pnas.86.16.6225. Proc Natl Acad Sci U S A. 1989. PMID: 2668958 Free PMC article.
-
The hyper-gene conversion hpr5-1 mutation of Saccharomyces cerevisiae is an allele of the SRS2/RADH gene.Genetics. 1991 Jan;127(1):75-85. doi: 10.1093/genetics/127.1.75. Genetics. 1991. PMID: 1849857 Free PMC article.
-
Rapid kinetics of mismatch repair of heteroduplex DNA that is formed during recombination in yeast.Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3363-7. doi: 10.1073/pnas.90.8.3363. Proc Natl Acad Sci U S A. 1993. PMID: 8475081 Free PMC article.
-
Gene conversion adjacent to regions of double-strand break repair.Mol Cell Biol. 1988 Dec;8(12):5292-8. doi: 10.1128/mcb.8.12.5292-5298.1988. Mol Cell Biol. 1988. PMID: 3072478 Free PMC article.
-
Yeast mismatch repair components are required for stable inheritance of gene silencing.PLoS Genet. 2020 May 29;16(5):e1008798. doi: 10.1371/journal.pgen.1008798. eCollection 2020 May. PLoS Genet. 2020. PMID: 32469861 Free PMC article.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous