Biomolecular condensates in photosynthesis and metabolism
- PMID: 32966943
- DOI: 10.1016/j.pbi.2020.08.006
Biomolecular condensates in photosynthesis and metabolism
Abstract
The transient assembly or sequestration of enzymes into clusters permits the channeling of metabolites, but requires spatiotemporal control. Liquid liquid phase separation (LLPS) has recently emerged as a fundamental concept enabling formation of such assemblies into non-membrane bound organelles. The role of LLPS in the formation of condensates containing the CO2-fixing enzyme Rubisco has recently become appreciated. Both prokaryotic carboxysomes and eukaryotic pyrenoids enhance the carboxylation reaction by enabling the saturation of the enzyme with CO2 gas. Biochemical reconstitution and structural biology are revealing the mechanistic basis of these photosynthetic condensates. At the same time other enzyme clusters, such as purinosomes for de-novo purine biosynthesis and G-bodies containing glycolytic enzymes, are emerging to behave like phase-separated systems. In the near future we anticipate details of many more such metabolic condensates to be revealed, deeply informing our ability to influence metabolic fluxes.
Copyright © 2020 Elsevier Ltd. All rights reserved.
Similar articles
-
Rubisco proton production can drive the elevation of CO2 within condensates and carboxysomes.Proc Natl Acad Sci U S A. 2021 May 4;118(18):e2014406118. doi: 10.1073/pnas.2014406118. Proc Natl Acad Sci U S A. 2021. PMID: 33931502 Free PMC article.
-
The stickers and spacers of Rubiscondensation: assembling the centrepiece of biophysical CO2-concentrating mechanisms.J Exp Bot. 2023 Jan 11;74(2):612-626. doi: 10.1093/jxb/erac321. J Exp Bot. 2023. PMID: 35903998
-
A linker protein from a red-type pyrenoid phase separates with Rubisco via oligomerizing sticker motifs.Proc Natl Acad Sci U S A. 2023 Jun 20;120(25):e2304833120. doi: 10.1073/pnas.2304833120. Epub 2023 Jun 13. Proc Natl Acad Sci U S A. 2023. PMID: 37311001 Free PMC article.
-
Pyrenoids: CO2-fixing phase separated liquid organelles.Biochim Biophys Acta Mol Cell Res. 2021 Apr;1868(5):118949. doi: 10.1016/j.bbamcr.2021.118949. Epub 2021 Jan 7. Biochim Biophys Acta Mol Cell Res. 2021. PMID: 33421532 Review.
-
Phase Separation in Membrane Biology: The Interplay between Membrane-Bound Organelles and Membraneless Condensates.Dev Cell. 2020 Oct 12;55(1):30-44. doi: 10.1016/j.devcel.2020.06.033. Epub 2020 Jul 28. Dev Cell. 2020. PMID: 32726575 Review.
Cited by
-
Synthetic protein condensates for cellular and metabolic engineering.Nat Chem Biol. 2022 Dec;18(12):1330-1340. doi: 10.1038/s41589-022-01203-3. Epub 2022 Nov 18. Nat Chem Biol. 2022. PMID: 36400990 Review.
-
Biomolecular Liquid-Liquid Phase Separation for Biotechnology.BioTech (Basel). 2023 Apr 1;12(2):26. doi: 10.3390/biotech12020026. BioTech (Basel). 2023. PMID: 37092470 Free PMC article. Review.
-
Stress-related biomolecular condensates in plants.Plant Cell. 2023 Sep 1;35(9):3187-3204. doi: 10.1093/plcell/koad127. Plant Cell. 2023. PMID: 37162152 Free PMC article.
-
Phase-Separated Subcellular Compartmentation and Related Human Diseases.Int J Mol Sci. 2022 May 14;23(10):5491. doi: 10.3390/ijms23105491. Int J Mol Sci. 2022. PMID: 35628304 Free PMC article. Review.
-
Positioning the Model Bacterial Organelle, the Carboxysome.mBio. 2021 May 11;12(3):e02519-19. doi: 10.1128/mBio.02519-19. mBio. 2021. PMID: 33975941 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources