Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2021 Jul 10;35(2):75-92.
doi: 10.1089/ars.2019.7911. Epub 2020 Oct 21.

Procyanidin B2 Promotes Intestinal Injury Repair and Attenuates Colitis-Associated Tumorigenesis via Suppression of Oxidative Stress in Mice

Affiliations

Procyanidin B2 Promotes Intestinal Injury Repair and Attenuates Colitis-Associated Tumorigenesis via Suppression of Oxidative Stress in Mice

Xiangzhan Zhu et al. Antioxid Redox Signal. .

Abstract

Aims: Intact intestinal epithelium is essential to maintain normal intestinal physiological function. Irradiation-induced gastrointestinal syndrome or inflammatory bowel disease occurred when epithelial integrity was impaired. This study aims at exploring the mechanism of procyanidin B2 (PB2) administration to promote intestinal injury repair in mice. Results: PB2 treatment reduces reactive oxygen species (ROS) accumulation and protects the intestine damage from irradiation. Mechanistic studies reveal that PB2 could effectively slow down the degradation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and it significantly triggers Nrf2 into the nucleus, which leads to subsequent antioxidant enzyme expression. However, knockdown of Nrf2 attenuates PB2-induced protection in the intestine. More importantly, PB2 also promotes leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5)-positive intestinal stem cells (Lgr5+ ISCs) driven regeneration via enhancing Wnt/β-catenin signaling, which depends on, at least in part, activation of the Nrf2 signal. Evidence from an injury model of intestinal organoids is similar with in vivo results. Correspondingly, results from flow cytometric analysis and luciferase reporter assay reveal that PB2 also inhibits the level of ROS and promotes Lgr5 expression in vitro. Finally, PB2 alleviates the severity of experimental colitis and colitis-associated cancer in a long-term inflammatory model via inhibiting nuclear localization of p65. Innovation: This study, for the first time, reveals a role of PB2 for intestinal regeneration and repair after radiation or dextran sulfate sodium-induced injury in mice. Conclusion: Our results indicate that PB2 can repress oxidative stress via Nrf2/ARE signaling and then promote intestinal injury repair.

Keywords: experimental colitis; intestine stem cell; oxidative stress; procyanidin B2; regeneration.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources