Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Nov;94(11):3645-3669.
doi: 10.1007/s00204-020-02899-9. Epub 2020 Sep 10.

An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment

Affiliations
Review

An update on T-2 toxin and its modified forms: metabolism, immunotoxicity mechanism, and human exposure assessment

Qinghua Wu et al. Arch Toxicol. 2020 Nov.

Abstract

T-2 toxin is the most toxic trichothecene mycotoxin, and it exerts potent toxic effects, including immunotoxicity, neurotoxicity, and reproductive toxicity. Recently, several novel metabolites, including 3',4'-dihydroxy-T-2 toxin and 4',4'-dihydroxy-T-2 toxin, have been uncovered. The enzymes CYP3A4 and carboxylesterase contribute to T-2 toxin metabolism, with 3'-hydroxy-T-2 toxin and HT-2 toxin as the corresponding primary products. Modified forms of T-2 toxin, including T-2-3-glucoside, exert their immunotoxic effects by signaling through JAK/STAT but not MAPK. T-2-3-glucoside results from hydrolyzation of the corresponding parent mycotoxin and other metabolites by the intestinal microbiota, which leads to enhanced toxicity. Increasing evidence has shown that autophagy, hypoxia-inducible factors, and exosomes are involved in T-2 toxin-induced immunotoxicity. Autophagy promotes the immunosuppression induced by T-2 toxin, and a complex crosstalk between apoptosis and autophagy exists. Very recently, "immune evasion" activity was reported to be associated with this toxin; this activity is initiated inside cells and allows pathogens to escape the host immune response. Moreover, T-2 toxin has the potential to trigger hypoxia in cells, which is related to activation of hypoxia-inducible factor and the release of exosomes, leading to immunotoxicity. Based on the data from a series of human exposure studies, free T-2 toxin, HT-2 toxin, and HT-2-4-glucuronide should be considered human T-2 toxin biomarkers in the urine. The present review focuses on novel findings related to the metabolism, immunotoxicity, and human exposure assessment of T-2 toxin and its modified forms. In particular, the immunotoxicity mechanisms of T-2 toxin and the toxicity mechanism of its modified form, as well as human T-2 toxin biomarkers, are discussed. This work will contribute to an improved understanding of the immunotoxicity mechanism of T-2 toxin and its modified forms.

Keywords: Biomarkers; Human exposure assessments; Immunotoxicity; Metabolism; Modified T-2 toxin; T-2 toxin.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Abdallah MF, Girgin G, Baydar T, Krska R, Sulyok M (2017) Occurrence of multiple mycotoxins and other fungal metabolites in animal feed and maize samples from Egypt using LC–MS/MS. J Sci Food Agric 97(13):4419–4428
    1. Aberg AT, Solyakov A, Bondesson U (2013) Development and in-house validation of an LC-MS/MS method for the quantification of the mycotoxins deoxynivalenol, zearalenone, T-2 and HT-2 toxin, ochratoxin A and fumonisin B1 and B2 in vegetable animal feed. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30(3):541–549
    1. Abia WA, Warth B, Sulyok M et al (2013) Bio-monitoring of mycotoxin exposure in Cameroon using a urinary multi-biomarker approach. Food Chem Toxicol 62:927–934
    1. Aga M, Bentz GL, Raffa S, Torrisi MR, Kondo S, Wakisaka N, Yoshizaki T, Pagano JS, Shackelford J (2014) Exosomal HIF1alpha supports invasive potential of nasopharyngeal carcinoma-associated LMP1-positive exosomes. Oncogene 33(37):4613–4622
    1. Agrawal M, Yadav P, Lomash V, Bhaskar ASB, Rao PVL (2012) T-2 toxin induced skin inflammation and cutaneous injury in mice. Toxicology 302(2–3):255–265

Publication types

LinkOut - more resources