Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2020 Mar;21(3):151-170.
doi: 10.1038/s41576-019-0186-3. Epub 2019 Nov 28.

Cell-free gene expression: an expanded repertoire of applications

Affiliations
Review

Cell-free gene expression: an expanded repertoire of applications

Adam D Silverman et al. Nat Rev Genet. 2020 Mar.

Abstract

Cell-free biology is the activation of biological processes without the use of intact living cells. It has been used for more than 50 years across the life sciences as a foundational research tool, but a recent technical renaissance has facilitated high-yielding (grams of protein per litre), cell-free gene expression systems from model bacteria, the development of cell-free platforms from non-model organisms and multiplexed strategies for rapidly assessing biological design. These advances provide exciting opportunities to profoundly transform synthetic biology by enabling new approaches to the model-driven design of synthetic gene networks, the fast and portable sensing of compounds, on-demand biomanufacturing, building cells from the bottom up, and next-generation educational kits.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Blow, J. J. & Laskey, R. A. Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell 47, 577–587 (1986). - PubMed
    1. Fuller, R. S., Kaguni, J. M. & Kornberg, A. Enzymatic replication of the origin of the Escherichia coli chromosome. Proc. Natl Acad. Sci. USA 78, 7370–7374 (1981). - PubMed
    1. Preiss, T. & Hentze, M. W. Dual function of the messenger RNA cap structure in poly(A)-tail-promoted translation in yeast. Nature 392, 516–520 (1998). - PubMed
    1. Nirenberg, M. W. & Matthaei, J. H. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc. Natl Acad. Sci. USA 47, 1588–1602 (1961). - PubMed
    1. Nirenberg, M. & Leder, P. RNA codewords and protein synthesis. The effect of trinucleotides upon the binding of sRNA to ribosomes. Science 145, 1399–1407 (1964). - PubMed

Publication types

Substances

LinkOut - more resources