Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays
- PMID: 31591552
- DOI: 10.1038/s41587-019-0286-9
Simultaneous repression of multiple bacterial genes using nonrepetitive extra-long sgRNA arrays
Abstract
Engineering cellular phenotypes often requires the regulation of many genes. When using CRISPR interference, coexpressing many single-guide RNAs (sgRNAs) triggers genetic instability and phenotype loss, due to the presence of repetitive DNA sequences. We stably coexpressed 22 sgRNAs within nonrepetitive extra-long sgRNA arrays (ELSAs) to simultaneously repress up to 13 genes by up to 3,500-fold. We applied biophysical modeling, biochemical characterization and machine learning to develop toolboxes of nonrepetitive genetic parts, including 28 sgRNA handles that bind Cas9. We designed ELSAs by combining nonrepetitive genetic parts according to algorithmic rules quantifying DNA synthesis complexity, sgRNA expression, sgRNA targeting and genetic stability. Using ELSAs, we created three highly selective phenotypes in Escherichia coli, including redirecting metabolism to increase succinic acid production by 150-fold, knocking down amino acid biosynthesis to create a multi-auxotrophic strain and repressing stress responses to reduce persister cell formation by 21-fold. ELSAs enable simultaneous and stable regulation of many genes for metabolic engineering and synthetic biology applications.
Similar articles
-
sgRNA Sequence Motifs Blocking Efficient CRISPR/Cas9-Mediated Gene Editing.Cell Rep. 2019 Jan 29;26(5):1098-1103.e3. doi: 10.1016/j.celrep.2019.01.024. Cell Rep. 2019. PMID: 30699341 Free PMC article.
-
HIV-1 Employs Multiple Mechanisms To Resist Cas9/Single Guide RNA Targeting the Viral Primer Binding Site.J Virol. 2018 Sep 26;92(20):e01135-18. doi: 10.1128/JVI.01135-18. Print 2018 Oct 15. J Virol. 2018. PMID: 30068653 Free PMC article.
-
Multiplexed sgRNA Expression Allows Versatile Single Nonrepetitive DNA Labeling and Endogenous Gene Regulation.ACS Synth Biol. 2018 Jan 19;7(1):176-186. doi: 10.1021/acssynbio.7b00268. Epub 2017 Sep 7. ACS Synth Biol. 2018. PMID: 28849913
-
Optimization Strategies for the CRISPR-Cas9 Genome-Editing System.Cold Spring Harb Protoc. 2016 Oct 3;2016(10). doi: 10.1101/pdb.top090894. Cold Spring Harb Protoc. 2016. PMID: 27698246 Review.
-
Multigene editing: current approaches and beyond.Brief Bioinform. 2021 Sep 2;22(5):bbaa396. doi: 10.1093/bib/bbaa396. Brief Bioinform. 2021. PMID: 33428725 Review.
Cited by
-
Automated design of thousands of nonrepetitive parts for engineering stable genetic systems.Nat Biotechnol. 2020 Dec;38(12):1466-1475. doi: 10.1038/s41587-020-0584-2. Epub 2020 Jul 13. Nat Biotechnol. 2020. PMID: 32661437
-
Overcoming the design, build, test bottleneck for synthesis of nonrepetitive protein-RNA cassettes.Nat Commun. 2021 Mar 11;12(1):1576. doi: 10.1038/s41467-021-21578-6. Nat Commun. 2021. PMID: 33707432 Free PMC article.
-
Intein-based thermoregulated meganucleases for containment of genetic material.Nucleic Acids Res. 2024 Feb 28;52(4):2066-2077. doi: 10.1093/nar/gkad1247. Nucleic Acids Res. 2024. PMID: 38180814 Free PMC article.
-
Opportunities and Challenges for Microbial Synthesis of Fatty Acid-Derived Chemicals (FACs).Front Bioeng Biotechnol. 2021 Jan 26;9:613322. doi: 10.3389/fbioe.2021.613322. eCollection 2021. Front Bioeng Biotechnol. 2021. PMID: 33575251 Free PMC article. Review.
-
Genome editing systems across yeast species.Curr Opin Biotechnol. 2020 Dec;66:255-266. doi: 10.1016/j.copbio.2020.08.011. Epub 2020 Oct 1. Curr Opin Biotechnol. 2020. PMID: 33011454 Free PMC article. Review.
References
-
- Dominguez, A. A., Lim, W. A. & Qi, L. S. Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nat. Rev. Mol. Cell Biol. 17, 5–15 (2016). - PubMed
-
- Barrangou, R. & Horvath, P. A decade of discovery: CRISPR functions and applications. Nat. Microbiol. 2, 17092 (2017). - PubMed
-
- Halperin, S. O. et al. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560, 248–252 (2018). - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources